簡易檢索 / 詳目顯示

研究生: 何安娜
Ianatul - Khoiroh
論文名稱: 含聚乙二醇衍生物與醇類雙成分寡聚物溶液之汽液平衡研究
Vapor-Liquid Equilibrium of Binary Oligmeric Solutions Containing PEG Derivatives and Alcohols
指導教授: 李明哲
Ming-Jer Lee
口試委員: 諶玉真
Yu-Jane Sheng
杜建勳
Chien-Hsiun Tu
李夢輝
Meng-Hui Li
林祥泰
Shiang-Tai Lin
林河木
Ho-Mu Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 201
中文關鍵詞: Zero-Shear Rate ViscosityDensityGROMACSMolecular Dynamics SimulationsNRTLUNIQUACAlcoholsOligomersPEGsVapor-Liquid EquilibriaSolvation Free EnergyIntermolecular InteractionsAverage Number of Hydrogen BondsRadial Distribution FunctionRadius of Gyration
外文關鍵詞: Zero-Shear Rate Viscosity, Density, GROMACS, Molecular Dynamics Simulations, NRTL, UNIQUAC, Alcohols, Oligomers, PEGs, Vapor-Liquid Equilibria, Solvation Free Energy, Intermolecular Interactions, Average Number of Hydrogen Bonds, Radial Distribution Function, Radius of Gyration
相關次數: 點閱:588下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本研究主要的重點在於在量測含聚乙二醇衍生物與醇類之高分子溶液雙成分系統 : PEGML + 甲醇、PEGML + 乙醇、PEGML + 異丙醇、PEGML + 第二丁醇、PEGML + 第三丁醇、PEGML + 正戊醇、PEGOPE + 第二丁醇、PEGOPE + 第三丁醇、PEGOPE + 正戊醇、PEGMOE + 第二丁醇、PEGMOE + 第三丁醇及PEGMOE + 正戊醇的汽液相平衡數據。每組雙成分系統,寡聚物的莫耳分率介於0.099到0.432之間共含四個進料組成。每個進料組成在恆溫下測量其平衡壓力而得到P-T-x數據。實驗係在一高溫高壓反應釜中進行,並量取溫度介於321.0 K至437.1 K之間的飽和蒸氣壓數據。此種設備及量測方法的優點在於對黏度較高的樣品如高分子溶液而言,較多簡單且容易操作,可操作的溫度與壓力範圍寬廣,且所得到的數據的準確度也不遜於其他現成的量測技術。各系統之飽和蒸汽壓與溫度的關係以Antoine的半經驗式關聯,而模式中之係數則是由非線性迴歸求得。UNIQUAC及NRTL活性係數模式被用來實驗數據的關聯,這兩個模式進而被用於計算溶劑在不同溫度下的活性,計算結果可觀察各系統偏離理想溶液之程度,也和由實驗數據所求得的活性值做一比較。
    此外,本研究也透過分子動力模擬利用GROMACS套裝軟體探討PEGML分別在水及醇類(甲醇、乙醇、異丙醇、第二丁醇、第三丁醇及正戊醇)的靜態與動態性質。這些雙成分系統分別使用OPLS-AA模式來模擬PEGML與醇類分子的力場而SPC/E模式則用來模擬水分子的力場。從恆溫恆壓條件下模擬所得的密度值與實驗值比較,以便確認模擬時所使用之力場的合適性,而混合物的黏度則是使用NEMD模擬法來估算。為了更瞭解PEGML分子與溶劑間的交互作用,我們藉由MD模擬結果來分析氫鍵、靜電作用及凡德瓦等的交互作用能量。我們更進一步以FEP的手法估算溶合自由能,其中自由能的差值是由BAR法求取。此外,這些雙成分系統中結構與物性間之關係也從分子模擬的結果獲取,這些訊息包括徑向分佈函數與旋轉半徑等,由這些資料有助於我們從分子層面來瞭解這些溶液的行為。


    ABSTRACT

    The present work focuses on the vapor-liquid equilibrium (VLE) measurements for polymeric solutions containing polyethylene glycol (PEG) derivatives and alcohols: polyethylene glycol monolaurate (PEGML) + methanol, PEGML + ethanol, PEGML + 2-propanol, PEGML + 2-butanol, PEGML + tert-butanol, PEGML + 1-pentanol, polyethylene glycol mono-4-octylphenyl ether (PEGOPE) + 2-butanol, PEGOPE + tert-butanol, PEGOPE + 1-pentanol, polyethylene glycol monooleyl ether (PEGMOE) + 2-butanol, PEGMOE + tert-butanol, and PEGMOE + 1-pentanol. For each binary system, four feed compositions were studied over the concentration range from 0.099 to 0.432 of oligomers in mole fractions. With a given feed composition, equilibrium pressures were measured at constant temperatures to obtain p-T-x data. The saturated pressures data are measured at temperatures ranging from (320.0 to 437.1) K by using an autoclave apparatus. The advantages of this apparatus and method are the simplicity and ease of operation for viscous samples like polymer solutions, wide range of temperature and pressure operation, while the accuracy of the data obtained could be matched by other available techniques. The relationship between the saturated pressure and temperature was obtained from the empirical Antoine equation, in which the constants were determined by nonlinear regression. Two activity coefficient models, the universal quasichemical (UNIQUAC) model and the nonrandom two-liquid (NRTL) model, were applied to correlate the experimental data. These two thermodynamic models were further used to calculate solvent activities at various temperatures to observe the deviation from ideal behavior and compare with the values obtained from experimental results.
    Additionally, we explore the static and dynamical properties of PEGML in water and in alcohols (methanol, ethanol, 2-propanol, 2-butanol, tert-butanol, and 1-pentanol), through molecular dynamics (MD) simulation by using the Groningen Machine for Chemical Simulation (GROMACS) software package. The binary systems were simulated using the OPLS-AA (optimized potentials for liquid simulations, all-atom) force field for PEGML and alcohol molecules and water was modeled using the SPC/E (extended simple point charge) model. From the isothermal-isobaric (NpT, constant number of particles, constant pressure, and constant temperature), we extracted the densities for simulated systems and compare the values to those from experimental results in order to confirm the validity of the selected force fields. Dynamic aspect of the mixture behavior is inferred from the calculated shear viscosity which was computed by using non-equilibrium molecular dynamics (NEMD) simulations. To gain more insight to the nature of interactions between PEGML molecule and solvents, we analyzed the hydrogen-bonds, the electrostatic (Couloumb) interactions, and the van der Waals (Lennard-Jones) interactions energies extracted from MD simulations. The results were further strengthened by computing the solvation free energy by employing the free energy perturbation (FEP) approach. In this method, the free energy difference was computed by using the Bennet Acceptance Ratio (BAR) method. Moreover, the structural features were simulated in order to gain more understanding of the solution behavior at the molecular level, including the radial distribution functions and the radius of gyration for all the binary systems under investigation.

    CONTENTS Abstract I Acknowledgements V List of Figures IX List of Tables XIII List of Schemes XV CHAPTER 1 Introduction 1 1.1 Polyethylene Glycol and Its Derivatives 1 1.2 Vapor-Liquid Equilibria of Polymer Solutions 3 1.2.1 Equation of State Models 5 1.2.2 Activity Coefficient Models 6 1.2.3 Literature Review 7 1.3 Measurement Techniques in Vapor-Liquid Equilibria of Polymer Solutions 9 1.3.1 Vapor Pressure Measurement 9 1.3.2 Isopiestic Method 10 1.3.3 Inverse Gas Chromatography 10 1.3.4 Membrane Osmometry 11 1.4 Aim of the Study 15 1.5 Survey of the Contents 17 CHAPTER 2 Experimental Section 19 2.1 Materials 19 2.2 Vapor Liqud Equilibria Measurements 20 2.2.1 Apparatus 20 2.2.2 Procedures 21 2.3 Density Measurements 22 CHAPTER 3 Experimental Results and Correlations 27 3.1 Densities and Vapor Pressures of Solvents 28 3.2 Saturated Pressures for Oligomeric Materials Containing Alcohols 29 3.3 Correlations from the Antoine Equation 30 3.4 Correlations from the Activity Coefficient Models 32 3.4.1 The UNIQUAC Model 33 3.4.2 The NRTL Model 34 3.4.3 Correlation Results 35 CHAPTER 4 Molecular Dynamics Simulations of Structural and Thermodynamic Properties Polyethylene Glycol Monolaurate with Water or Alcohols 83 4.1 Basic Concept 83 4.1.1 Potential Function 86 4.1.2 Molecular Dynamics Limitations 89 4.2 Computational Details 91 4.2.1 (Equilibrium) Molecular Dynamics Simulation 91 4.2.2 Non-Equilibrium Molecular Dynamics Simulation 93 4.2.3 Solvation Free Energy of Calculation 93 4.3 Simulation Results 94 4.3.1 Density 95 4.3.2 Viscosity 95 4.3.3 Intermolecular Interaction and Solvent Distribution 98 4.3.4 Free Energy of Solvation 101 4.3.5 Radius of Gyration 107 CHAPTER 5 Conclusions 123 References 125 Appendix 145 List of Publications 173 Nomenclatures 175 Biographical Data 179

    References

    1. Harris, J. M., Poly(ethylene Glycol) Chemistry, Biothechnical and Biomedical Applications. Plenum Press: New York, 1992.
    2. Bailey Jr., F. E.; Koleske, J. V., Alkylene Oxide and Their Polymers. Marcel Dekker, Inc.: New York, 1990.
    3. Powell, G. M., Polyethylene Glycol. In Handbook of Water Soluble Gums and Resins, Davidson, R. I., Ed. McGraw-Hill Book Company: New York, 1980.
    4. Molyneux, P., Water-Soluble Synthetic Polymers: Properties and Behavior. CRC Press: Florida, 1988.
    5. Sahin, M.; Ayranci, E., Volumetric Properties of (Ascorbic Acid + Polyethylene Glycol 3350 +Water) Systems at T = (288.15, 298.15, and 308.15) K. J. Chem. Thermodyn. 2011, 43, (2), 177-185.
    6. Zalipsky, S., Chemistry of Polyethylene Glycol Conjugates with Biologically Active Molecules. Adv. Drug Delivery Rev. 1995, 16, (2–3), 157-182.
    7. Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D., Polyethylene Glycol and Solutions of Polyethylene Glycol as Green Reaction Media. Green Chem. 2005, 7, (2), 64-82.
    8. Fruijtier-Pölloth, C., Safety Assessment on Polyethylene Glycols (PEGs) and Their Derivatives as Used in Cosmetic Products. Toxicology 2005, 214, (1–2), 1-38.
    9. Heldebrant, D. J.; Jessop, P. G., Liquid Poly(ethylene glycol) and Supercritical Carbon Dioxide:  A Benign Biphasic Solvent System for Use and Recycling of Homogeneous Catalysts. J. Am. Chem. Soc. 2003, 125, (19), 5600-5601.
    10. Herold, D. A.; Keil, K.; Bruns, D. E., Oxidation of Polyethylene Glycols by Alcohol Dehydrogenase. Biochem. Pharmacol. 1989, 38, (1), 73-76.
    11. Wu, D.; Wang, C.; Geng, X., An Approach for Increasing the Mass Recovery of Proteins Derived from Inclusion Bodies in Biotechnology. Biotechnology Progress 2007, 23, (2), 407-412.
    12. Yang, H.; Morris, J. J.; Lopina, S. T., Polyethylene Glycol–Polyamidoamine Dendritic Micelle as Solubility Enhancer and the Effect of the Length of Polyethylene Glycol Arms on the Solubility of Pyrene in Water. J. Colloid Interface Sci. 2004, 273, (1), 148-154.
    13. Frensdorff, H. K., Stability Constants of Cyclic Polyether Complexes with Univalent Cations. J. Am. Chem. Soc. 1971, 93, (3), 600-606.
    14. Kjellander, R.; Florin, E., Water Structure and Changes in Thermal Stability of the System Poly(ethylene oxide)-Water. J. Chem. Soc., Faraday Trans. 1981, 77, (9), 2053-2077.
    15. Hayashi, S.; Saito, S.; Kim, J.-H.; Nishimura, O.; Sudo, R., Aerobic Biodegradation Behavior of Nonylphenol Polyethoxylates and Their Metabolites in the Presence of Organic Matter. Environ. Sci. Tech. 2005, 39, (15), 5626-5633.
    16. Golds, T.; Maliga, P.; Koop, H.-U., Stable Plastid Transformation in PEG-treated Protoplasts of Nicotiana tabacum. Nat. Biotech. 1993, 11, (1), 95-97.
    17. Cleland, J. L.; Builder, S. E.; Swartz, J. R.; Winkler, M.; Chang, J. Y.; Wang, D. I. C., Polyethylene Glycol Enhanced Protein Refolding. Nat. Biotech. 1992, 10, (9), 1013-1019.
    18. Greenwald, R. B.; Pendri, A.; Bolikal, D., Highly Water Soluble Taxol Derivatives: 7-Polyethylene Glycol Carbamates and Carbonates. J. Organic Chem. 1995, 60, (2), 331-336.
    19. Cruz, M. S.; Chumpitaz, L. D. A.; Alves, J. G. L. F.; Meirelles, A. J. A., Kinematic Viscosities of Poly(ethylene glycols). J. Chem. Eng. Data 1999, 45, (1), 61-63.
    20. Silva, L. H. M. d.; Coimbra, J. S. R.; Meirelles, A. J. d. A., Equilibrium Phase Behavior of Poly(ethylene glycol) + Potassium Phosphate + Water Two-Phase Systems at Various pH and Temperatures. J. Chem. Eng. Data 1997, 42, (2), 398-401.
    21. Saravanan, S.; Reena, J. A.; Rao, J. R.; Murugesan, T.; Nair, B. U., Phase Equilibrium Compositions, Densities, and Viscosities of Aqueous Two-Phase Poly(ethylene glycol) + Poly(acrylic acid) System at Various Temperatures. J. Chem. Eng. Data 2006, 51, (4), 1246-1249.
    22. Herskowitz, M.; Gottlieb, M., Vapor-Liquid Equilibrium in Aqueous Solutions of Various Glycols and Poly(ethylene Glycols). 3. Poly(ethylene Glycols). J. Chem. Eng. Data 1985, 30, (2), 233-234.
    23. Katre, N. V., The Conjugation of Proteins with Polyethylene Glycol and Other Polymers: Altering Properties of Proteins to Enhance their Therapeutic Potential. Adv. Drug Delivery Rev. 1993, 10, (1), 91-114.
    24. Duncan, R.; Kopeček, J., Soluble Synthetic Polymers as Potential Drug Carriers. In Springer Berlin / Heidelberg: 1984; Vol. 57, pp 51-101.
    25. Gnanou, Y.; Hild, G.; Rempp, P., Hydrophilic Polyurethane Networks based on Poly(ethylene Oxide): Synthesis, Characterization, and Properties. Potential Applications as Biomaterials. Macromolecules 1984, 17, (4), 945-952.
    26. Graber, T. A.; Andrews, B. A.; Asenjo, J. A., Model for the Partition of Metal Ions in Aqueous Two-Phase Systems. J. Chromatogr. B: Biomed. Sci. Appl. 2000, 743, (1–2), 57-64.
    27. Rogers, R. D.; Bond, A. H.; Bauer, C. B., Aqueous Biphase Systems for Liquid/Liquid Extraction of f-Elements Utilizing Polyethylene Glycols. Sep. Sci. Technol. 1993, 28, (1-3), 139-153.
    28. Aguiñaga-Diaz, P. A.; Guzman, R. Z., Affinity Partitioning of Metal Ions in Aqueous Polyethylene Glycol/Salt Two-Phase Systems with PEG-Modified Chelators. Sep. Sci. Technol. 1996, 31, (10), 1483-1499.
    29. Taboada, M. E.; Graber, T. A.; Asenjo, J. A.; Andrews, B. A., Drowning-Out Crystallisation of Sodium Sulphate Using Aqueous Two-Phase Systems. J. Chromatogr. B: Biomed. Sci. Appl. 2000, 743, (1–2), 101-105.
    30. Gu, X.; Zhang, Y.; Zhang, J.; Yang, M.; Tamaki, H.; Kamagata, Y., Degradation Behaviors of Nonylphenol Ethoxylates by Isolated Bacteria Using Improved Isolation Method. J. Environ. Sci. 2008, 20, (9), 1025-1027.
    31. Giger, W.; Brunner, P. H.; Schaffner, C., 4-Nonylphenol in Sewage Sludge: Accumulation of Toxic Metabolites from Nonionic Surfactants. Science 1984, 225, (4662), 623-625.
    32. Giger, W.; Stephanou, E.; Schaffner, C., Persistent Organic Chemicals in Sewage Effluents: I. Identifications of Nonylphenols and Nonylphenolethoxylates by Glass Capillary Gas Chromatography/Mass Spectrometry. Chemosphere 1981, 10, (11-12), 1253-1263.
    33. Nimrod, A. C.; Benson, W. H., Environmental Estrogenic Effects of Alkylphenol Ethoxylates. Crit. Rev. Toxicol. 1996, 26, (3), 335-364.
    34. Folie, B.; Radosz, M., Phase Equilibria in High-Pressure Polyethylene Technology. Ind. Eng. Chem. Res. 1995, 34, (5), 1501-1516.
    35. Wohlfarth, C., Calculation of Phase Equilibria in Random Copolymer Systems. Makromol. Theory Simul. 1993, 2, (5), 605-635.
    36. Fried, J. R., Polymer Science and Technology. Prentice Hall: New Jersey, 1995.
    37. Gee, G.; Treloar, L. R. G., The Interaction between Rubber and Liquids. 1. A Thermodynamical Study of the System Rubber-Benzene. Trans. Far. Soc. 1942, 38, 147-165.
    38. Rodgers, P. A., Pressure–Volume–Temperature Relationships for Polymeric Liquids: A Review of Equations of State and Their Characteristic Parameters for 56 Polymers. J. Appl. Polym. Sci. 1993, 48, (6), 1061-1080.
    39. Sanchez, I. C.; Lacombe, R. H., An Elementary Molecular Theory of Classical Fluids. Pure Fluids. J. Phys. Chem. 1976, 80, (21), 2352-2362.
    40. Sanchez, I. C.; Lacombe, R. H., Statistical Thermodynamics of Polymer Solutions. Macromolecules 1978, 11, (6), 1145-1156.
    41. Chapman, W. G.; Gubbins, K. E.; Jackson, G.; Radosz, M., SAFT: Equation-of-State Solution Model for Associating Fluids. Fluid Phase Equilib. 1989, 52, (0), 31-38.
    42. Huang, S. H.; Radosz, M., Equation of State for Small, Large, Polydisperse, and Associating Molecules. Ind. Eng. Chem. Res. 1990, 29, (11), 2284-2294.
    43. Huang, S. H.; Radosz, M., Equation of State for Small, Large, Polydisperse, and Associating Molecules: Extension to Fluid Mixtures. nd. Eng. Chem. Res. 1991, 30, (8), 1994-2005.
    44. Xiong, Y.; Kiran, E., Comparison of Sanchez–Lacombe and SAFT Model in Predicting Solubility of Polyethylene in High-Pressure Fluids. J. Appl. Polym. Sci. 1995, 55, (13), 1805-1818.
    45. Gross, J.; Sadowski, G., Perturbed-Chain SAFT:  An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, (4), 1244-1260.
    46. Gross, J.; Sadowski, G., Modeling Polymer Systems Using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State. Ind. Eng. Chem. Res. 2001, 41, (5), 1084-1093.
    47. Kontogeorgis, G. M.; Harismiadis, V. I.; Fredenslund, A.; Tassios, D. P., Application of the van der Waals Equation of State to Polymers: I. Correlation. Fluid Phase Equilib. 1994, 96, (0), 65-92.
    48. Orbey, H.; Bokis, C. P.; Chen, C.-C., Polymer−Solvent Vapor−Liquid Equilibrium:  Equations of State versus Activity Coefficient Models. Ind. Eng. Chem. Res. 1998, 37, (4), 1567-1573.
    49. Orbey, H.; Bokis, C. P.; Chen, C.-C., Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process:  The Sanchez−Lacombe, Statistical Associating Fluid Theory, and Polymer-Soave−Redlich−Kwong Equations of State. Ind. Eng. Chem. Res. 1998, 37, (11), 4481-4491.
    50. Saraiva, A.; Kontogeorgis, G. M.; Harismiadis, V. J.; Fredenslund, A.; Tassios, D. P., Application of the van der Waals Equation of State to Polymers IV. Correlation and Prediction of Lower Critical Solution Temperatures for Polymer Solutions. Fluid Phase Equilib. 1996, 115, (1–2), 73-93.
    51. Flory, P. J., Principles of Polymer Chemistry. Cornell University Press: London, 1953.
    52. Abrams, D. S.; Prausnitz, J. M., Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE J. 1975, 21, (1), 116-128.
    53. Renon, H.; Prausnitz, J. M., Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J. 1968, 14, (1), 135-144.
    54. Chen, C.-C., A Segment-Based Local Composition Model for the Gibbs Energy of Polymer Solutions. Fluid Phase Equilib. 1993, 83, (0), 301-312.
    55. Fredenslund, A.; Jones, R. L.; Prausnitz, J. M., Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. AIChE J. 1975, 21, (6), 1086-1099.
    56. Oishi, T.; Prausnitz, J. M., Estimation of Solvent Activities in Polymer Solutions Using a Group-Contribution Method. Ind. Eng. Chem. Process Des. Dev. 1978, 17, (3), 333-339.
    57. Wohlfarth, C., Vapour-Liquid Equilibrium Data of Binary Polymer Solutions: Vapour Pressures, Henry-Constants and Segment-Molar Excess Gibbs Free Energies. Elsevier Science B. V.: Amsterdam, 1994.
    58. Danner, R. P.; High, M. S., Handbook of Polymer Solution Thermodynamics. Wiley: New York, 1993.
    59. Caruthers, J. M.; Chao, K.-C.; Venkatasubramanian, V.; Sy-Siong-Kiao, R.; Novenario, C. R.; Sundaram, A., Handbook of Diffusion and Thermal Properties of Polymers and Polymer Solutions. American Institute of Chemical Engineers: New York, 1998.
    60. Wen, H.; Elbro, H. S.; Alessi, P., Polymer Solution Data Collection Part 1. DECHEMA Frankfurt, 1992.
    61. Wen, H.; Elbro, H. S.; Alessi, P., Polymer Solution Data Collection Part 2 + 3. DECHEMA Frankfurt, 1992.
    62. Barton, A. F. M., CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters. CRC Press, Inc.: Boca Raton, FL, 1990.
    63. Brandup, J.; Immergut, E. H., Polymer Handbook. 3rd ed.; John Wiley & Sons: New York, 1989.
    64. Brandup, J.; Immergut, E. H.; Grulke, E. A., Polymer Handbook. 4th ed.; John Wiley & Sons: New York, 1999.
    65. Zafarani-Moattar, M. T.; Sarmad, S., Measurement and Correlation of Phase Equilibria for Poly(ethylene glycol) Methacrylate + Alcohol Systems at 298.15 K. J. Chem. Eng. Data 2005, 50, (1), 283-287.
    66. Zafarani-Moattar, M. T.; Tohidifar, N., Vapor−Liquid Equilibria, Density, and Speed of Sound for the System Poly(ethylene glycol) 400 + Methanol at Different Temperatures. J. Chem. Eng. Data 2006, 51, (5), 1769-1774.
    67. Zafarani-Moattar, M. T.; Yeganeh, N., Isopiestic Determination of 2-Propanol Activity in 2-Propanol + Poly(ethylene glycol) Solutions at 25 °C. J. Chem. Eng. Data 2002, 47, (1), 72-75.
    68. Zafarani-Moattar, M. T.; Tohidifar, N., Vapor–Liquid Equilibria, Density, Speed of Sound, and Viscosity for the System Poly(ethylene glycol) 400 + Ethanol at Different Temperatures. J. Chem. Eng. Data 2008, 53, (3), 785-793.
    69. Sadeghi, R.; Shahebrahimi, Y., Vapor Pressure Osmometry Determination of Solvent Activities of Different Aqueous and Nonaqueous Polymer Solutions at 318.15 K. J. Chem. Eng. Data 2011, 56, (6), 2946-2954.
    70. Kim, J.; Choi, E.-H.; Yoo, K.-P.; Lee, C. S., Measurement of Activities of Solvents in Binary Polymer Solutions. Fluid Phase Equilib. 1999, 161, (2), 283-293.
    71. Esteve, X.; Chaudhari, S. K.; Coronas, A., Vapor-Liquid Equilibria for Methanol + Tetraethylene Glycol Dimethyl Ether. J. Chem. Eng. Data 1995, 40, (6), 1252-1256.
    72. Herraiz, J.; Shen, S.; Coronas, A., Vapor−Liquid Equilibria for Methanol + Poly(ethylene glycol) 250 Dimethyl Ether. J. Chem. Eng. Data 1998, 43, (2), 191-195.
    73. Schiller, M.; Gmehling, J., Measurement of Activity Coefficients at Infinite Dilution Using Gas-Liquid Chromatography. 4. Results for Alkylene Glycol Dialkyl Ethers as Stationary Phases. J. Chem. Eng. Data 1992, 37, (4), 503-508.
    74. Kuczynski, M.; t Hart, W.; Westerterp, K. R., Binary Vapour-Liquid Equilibria of Methanol with Sulfolane, Tetraethylene Glycol Dimethyl Ether and 18-Crown-6. Chem. Eng. Process. 1986, 20, (1), 53-58.
    75. Haynes, C. A.; Beynon, R. A.; King, R. S.; Blanch, H. W.; Prausnitz, J. M., Thermodynamic Properties of Aqueous Polymer Solutions: Poly(ethylene Glycol)/Dextran. J. Phys. Chem. 1989, 93, (14), 5612-5617.
    76. Chaudhari, S. K.; Patil, K. R.; Allepús, J.; Coronas, A., Measurement of the Vapor Pressure of 2,2,2-Trifluoroethanol and Tetraethylene Glycol Dimethyl Ether by Static Method. Fluid Phase Equilib. 1995, 108, (1–2), 159-165.
    77. Xu, R.; Léonard, J.; Bui, V. T., Vapor Pressure for Mixtures of Methylene Ester Oligomers with p-Dioxane and Chloroform. J. Chem. Eng. Data 1996, 41, (4), 681-684.
    78. Lei, H.; Wilding, W. V.; Pitt, W. G., Measurement of Activities of Toluene and Trichloroethylene in Polyisobutylene. J. Chem. Eng. Data 2007, 52, (6), 2233-2236.
    79. Khoiroh, I.; Lee, M.-J., Isothermal Vapor−Liquid Equilibrium for Binary Mixtures of Polyoxyethylene 4-Octylphenyl Ether with Methanol, Ethanol, or Propan-2-ol. J. Chem. Eng. Data 2011, 56, (4), 1178-1184.
    80. Gupta, R. B.; Prausnitz, J. M., Vapor-Liquid Equilibria of Copolymer + Solvent and Homopolymer + Solvent Binaries: New Experimental Data and Their Correlation. J. Chem. Eng. Data 1995, 40, (4), 784-791.
    81. Lieu, J. G.; Prausnitz, J. M.; Gauthier, M., Vapor–Liquid Equilibria for Binary Solutions of Arborescent and Linear Polystyrenes. Polymer 2000, 41, (1), 219-224.
    82. Kim, J.; Joung, K. C.; Yoo, K.-P.; Bae, S. Y., Measurement and Correlation of Vapor Sorption Equilibria of Polymer Solutions. Fluid Phase Equilib. 1998, 150–151, (0), 679-686.
    83. Ashworth, A. J.; Price, G. J., Use of the Magnetic Suspension Balance for the Study of Polymer Solutions. Thermochim. Acta 1984, 82, (1), 161-170.
    84. Ochs, L. R.; Kabiri-badr, M.; Cabezas, H., An Improved Isopiestic Method to Determine Activities in Multicomponent Mixtures. AIChE J. 1990, 36, (12), 1908-1912.
    85. Masuoka, H.; Murashige, N.; Yorizane, M., Measurement of Solubility of Organic Solvents in Polyisobutylene Using the Piezoelectric-Quartz Sorption Method. Fluid Phase Equilib. 1984, 18, (2), 155-169.
    86. Mikkilineni, S. P. V. N.; Tree, D. A.; High, M. S., Thermophysical Properties of Penetrants in Polymers via a Piezoelectric Quartz Crystal Microbalance. J. Chem. Eng. Data 1995, 40, (4), 750-755.
    87. Wong, H. C.; Campbell, S. W.; Bhethanabotla, V. R., Sorption of Benzene, Toluene and Chloroform by Poly(styrene) at 298.15 K and 323.15 K Using a Quartz Crystal Balance. Fluid Phase Equilib. 1997, 139, (1–2), 371-389.
    88. French, R. N.; Koplos, G. J., Activity Coefficients of Solvents in Elastomers Measured with a Quartz Crystal Microbalance. Fluid Phase Equilib. 1999, 158–160, (0), 879-892.
    89. Price, G. J.; Haddon, D. A.; Bainbridge, A.; Buley, J. M., Vapour Sorption Studies of Polymer-Solution Thermodynamics Using a Piezoelectric Quartz Crystal Microbalance. Polym. Int. 2006, 55, (7), 816-824.
    90. Wibawa, G.; Takahashi, M.; Sato, Y.; Takishima, S.; Masuoka, H., Solubility of Seven Nonpolar Organic Solvents in Four Polymers Using the Piezoelectric−Quartz Sorption Method. J. Chem. Eng. Data 2002, 47 (3), 518–524.
    91. Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206-222.
    92. Zhang, S.; Tsuboi, A.; Nakata, H.; Ishikawa, T., Activity Coefficients and Diffusivities of Solvents in Polymers. Fluid Phase Equilib. 2002, 194–197, (0), 1179-1189.
    93. Newman, R. D.; Prausnitz, J. M., Polymer-Solvent Interactions from Gas-Liquid Partition Chromatography. J. Phys. Chem. 1972, 76, (10), 1492-1496.
    94. Maloney, D. P.; Prausnitz, J. M., Solubilities of Ethylene and Other Organic Solutes in Liquid, Low-Density Polyethylene in the Region 124° to 300° C. AIChE J. 1976, 22, (1), 74-82.
    95. Stiel, L. I.; Harnish, D. F., Solubility of Gases and Liquids in Molten Polystyrene. AIChE J. 1976, 22, (1), 117-122.
    96. Liu, D. D.; Prausnitz, J. M., Solubilities of Gases and Volatile Liquids In Polyethylene and in Ethylene-Vinyl Acetate Copolymers in the Region 125-225 °C. Ind. Eng. Chem. Fundamen. 1976, 15, (4), 330-335.
    97. Tochigi, K.; Kurita, S.; Okitsu, Y.; Kurihara, K.; Ochi, K., Measurement and Prediction of Activity Coefficients of Solvents in Polymer Solutions Using Gas Chromatography and a Cubic-Perturbed Equation of State with Group Contribution. Fluid Phase Equilib. 2005, 228–229, (0), 527-533.
    98. Bercea, M.; Eckelt, J.; Wolf, B. A., Vapor Pressures of Polymer Solutions and the Modeling of Their Composition Dependence. Ind. Eng. Chem. Res. 2009, 48, (9), 4603-4606.
    99. Billmayer, F. W., Textbook of Polymer Science. Wiley: New York, 1971.
    100. Shinoda, K.; Friberg, S., Microemulsions: Colloidal Aspects. Adv. Colloid Interface Sci. 1975, 4, (4), 281-300.
    101. Hoar, T. P.; Schulman, J. H., Transparent Water-in-Oil Dispersions: the Oleopathic Hydro-Micelle. Nature 1943, 152, 102-103.
    102. Schulman, J. H.; Montagne, J. B., Formation of Microemulsions by Amino Alkyl Alcohols. Ann. N. Y. Acad. Sci. 1961, 92, (2), 366-371.
    103. Jawitz, J. W.; Annable, M. D.; Rao, P. S. C.; Rhue, R. D., Field Implementation of a Winsor Type I Surfactant/Alcohol Mixture for in Situ Solubilization of a Complex LNAPL as a Single-Phase Microemulsion. Environ. Sci. Technol. 1998, 32, (4), 523-530.
    104. Brandes, D.; Farley, K. J., Importance of Phase Behavior on the Removal of Residual DNAPLs from Porous Media by Alcohol Flooding. Water Environ. Res. 1993, 65, (7), 869-878.
    105. Abdul, A. S.; Gibson, T. L.; Ang, C. C.; Smith, J. C.; Sobczynski, R. E., In Situ Surfactant Washing of Polychlorinated Biphenyls and Oils from a Contaminated Site. Ground Water 1992, 30, (2), 219-231.
    106. Zana, R.; Yiv, S.; Strazielle, C.; Lianos, P., Effect of Alcohol on the Properties of Micellar Systems: I. Critical Micellization Concentration, Micelle Molecular Weight and Ionization Degree, and Solubility of Alcohols in Micellar Solutions. J Colloid Interface Sci. 1981, 80, (1), 208-223.
    107. Yiv, S.; Zana, R.; Ulbricht, W.; Hoffmann, H., Effect of Alcohol on the Properties of Micellar Systems: II. Chemical Relaxation Studies of the Dynamics of Mixed Alcohol + Surfactant Micelles. J Colloid Interface Sci. 1981, 80, (1), 224-236.
    108. Candau, S.; Zana, R., Effect of Alcohols on the Properties of Micellar Systems: III. Elastic and Quasielastic Light Scattering Study. J Colloid Interface Sci. 1981, 84, (1), 206-219.
    109. Candau, S.; Hirsch, E.; Zana, R., Effect of Alcohol on the Properties of Micellar Systems: IV. Effect of the Isotopic Composition of the System on the Micellar Properties in the Presence and Absence of 1-Pentanol. J Colloid Interface Sci. 1982, 88, (2), 428-436.
    110. Attwood, D.; Mosquera, V.; Rodriguez, J.; Garcia, M.; Suarez, M. J., Effect of Alcohols on the Micellar Properties in Aqueous Solution of Alkyltrimethylammonium Bromides. Colloid. Polym. Sci. 1994, 272, (5), 584-591.
    111. Milne, G. A. W., Gardner’s Commercially Important Chemicals: Synonims, Trade Names, and Properties. John Wiley and Sons: New Jersey, 2005.
    112. Ashcroft, S. J.; Booker, D. R.; Turner, J. C. R., Density Measurement by Oscillating Tube. Effects of Viscosity, Temperature, Calibration and Signal Processing. J. Chem. Soc. Faraday Trans. 1990, 86, (1), 145-149.
    113. Fandiño, O.; García, J.; Comuñas, M. J. P.; López, E. R.; Fernández, J., PρT Measurements and Equation of State (EoS) Predictions of Ester Lubricants up to 45 MPa. Ind. Eng. Chem. Res. 2006, 45, (3), 1172-1182.
    114. Bettin, H.; Spieweck, F., Die Dichte des Wassers als Funktion der Temperatur nach Einführung der internationalen Temperaturskala von 1990. PTB-Mitt. 1990, 100, 195–196.
    115. Jenkins, A. D.; Kratochvil, P.; Stepto, R. F. T.; Suter, U. W., Glossary of Basic Terms in Polymer Science. . Pure Appl. Chem. 1996, 68, (12), 2287-2311.
    116. Khoiroh, I.; Lee, M.-J., Isothermal (Vapour + Liquid) Equilibrium for Binary Mixtures of Polyethylene Glycol Mono-4-Nonylphenyl Ether (PEGNPE) with Methanol, Ethanol, or 2-Propanol. J. Chem. Thermodyn. 2011, 43, (10), 1417-1423.
    117. TRC Thermodynamic Tables-Non-hydrocarbons. Thermodynamics Research Center, The Texas A&M University System, College Station: Texas, 1993.
    118. Poling, B. E.; Prausnitz, J. M.; O’Connell, J., The Properties of Gases and Liquids. 5th ed.; McGraw-Hill Book Company: New York, 2000.
    119. Ambrose, D.; Sprake, C. H. S.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature. J. Chem. Thermodyn. 1975, 7, (2), 185-190.
    120. Ambrose, D.; Sprake, C. H. S., Thermodynamic Properties of Organic Oxygen Compounds XXV. Vapour Pressures and Normal Boiling Temperatures of Aliphatic Alcohols. J. Chem. Thermodyn. 1970, 2, (5), 631-645.
    121. Ambrose, D.; Townsend, R., 681. Thermodynamic Properties of Organic Oxygen Compounds. Part IX. The Critical Properties and Vapour Pressures, Above Five Atmospheres, of Six Aliphatic Alcohols. J. Chem. Soc. (resumed) 1963, 3614-3625.
    122. Beynon, E. T.; McKetta, J. J., The Thermodynamics Properties of 2-Methyl-2-Propanol J. Phys. Chem. 1963, 67, (12), 2761-2765.
    123. Haynes, C. A.; Beynon, R. A.; King, R. S.; Blanch, H. W.; Prausnitz, J. M., Thermodynamic Properties of Aqueous Polymer Solutions. J. Phys. Chem. 1989, 93, 5612−5617.
    124. Tsuji, T.; Hasegawa, K.; Hiaki, T.; Hongo, M., Isothermal Vapor−Liquid Equilibria for the Propan-2-ol + Water System Containing Poly(ethylene glycol) at 298.15 K. J. Chem. Eng. Data 1996, 41, 956−960.
    125. Pfohl, O.; Riebesell, C.; Dohrn, R., Measurement and Calculation of Phase Equilibria in the System n-Pentane + Polydimethylsiloxane at 308.15−423.15 K. Fluid Phase Equilib. 2002, 289−306.
    126. Antoine, C., Tensions des Vapeurs: Nouvelle Relation Entre les Tensions et les Temperatures. Compt. Rend. 1888, 107, 681-684.
    127. Majer, V.; Svoboda, V.; Pick, J., Heats of Vaporization of Fluids (Studies in Modern Thermodynamics). Elsevier Science: Amsterdam, 1989.
    128. Press, W. H.; Flannery, P. B.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes. 2nd ed.; Cambridge University Press: Cambridge, 1992.
    129. Biddiscombe, D. P.; Collerson, R. R.; Handley, R.; Herington, E. F. G.; Martin, J. F.; Sprake, C. H. S., 364. Thermodynamic Properties of Organic Oxygen Compounds. Part VIII. Purification and Vapour Pressures of the Propyl and Butyl Alcohols. J. Chem. Soc. (resumed) 1963, 1954-1957.
    130. Kontogeorgis, G. M.; Folas, G. K., Thermodynamic Models for Industrial Applications: from Classical and Advanced Mixing Rules to Association Theories. John Wiley & Sons: West Sussex, 2010.
    131. Nath, A.; Bender, E., On the Thermodynamics of Associated Solutions. II. Vapor—Liquid Equilibria of Binary Systems with One Associating Component. Fluid Phase Equilib. 1981, 7, (3–4), 289-307.
    132. Chen, C.-C., Toward Development of Activity Coefficient Models for Process and Product Design of Complex Chemical Systems. Fluid Phase Equilib. 2006, 241, (1–2), 103-112.
    133. Coutinho, J. A. P., Predictive UNIQUAC:  A New Model for the Description of Multiphase Solid−Liquid Equilibria in Complex Hydrocarbon Mixtures. Ind. Eng. Chem. Res. 1998, 37, (12), 4870-4875.
    134. Bondi, A., van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, (3), 441-451.
    135. Vetere, A., A Simple Modification of the NRTL Equation. Fluid Phase Equilib. 2000, 173, (1), 57-64.
    136. Barker, J. A., Determination of Activity Coefficients from Total Pressure Measurements. Aust. J. Chem. 1953, 6, (3), 207-210.
    137. Abbott, M. M.; Van Ness, H. C., An Extension of Barker's Method for Reduction of VLE Data. Fluid Phase Equilib. 1977, 1, (1), 3-11.
    138. Britt, H. I.; Luecke, R. H., The Estimation of Parameters in Nonlinear, Implicit Models. Technometrics 1973, 15, (2), 233-247.
    139. Lee, M.-J.; Chen, J.-T., An Improved Model of Second Virial Coefficients for Polar Fluids and Fluid Mixtures. J. Chem. Eng. Japan 1998, 31, (4), 518-526.
    140. Tsonopoulos, C., An Empirical Correlation of Second Virial Coefficients. AIChE J. 1974, 20, (2), 263-272.
    141. Wilding, W. V.; Johnson, J. K.; Rowley, R. L., Thermodynamic Properties and Vapor Pressures of Polar Fluids from a Four-Parameter Corresponding-States Method. Int. J. Thermophys. 1987, 8, (6), 717-735.
    142. Harlacher, E. A.; Braun, W. G., A Four-Parameter Extension of the Theorem of Corresponding States. Ind. Eng. Chem. Process Des. Dev. 1970, 9, (3), 479-483.
    143. Gonzalez, J. A.; Garcia De La Fuente, I.; Cobos, J. C., Thermodynamics of Mixtures with Strongly Negative Deviation from Raoult's Law: Part 1 Application of the DISQUAC Model to Mixtures of Alkan-1-ols and Propanal or Linear Alkanones and Trichloromethane. J. Chem. Soc. Faraday Trans. 1997, 93, (21), 3773-3780.
    144. González, J. A.; García De La Fuente, I.; Cobos, J. C., Thermodynamics of Mixtures with Strongly Negative Deviations from Raoult's Law: Part 2. Application of the DISQUAC Model to Mixtures of CHCl3 or CH2Cl2 with Oxaalkanes. Comparison with Dortmund UNIFAC Results. Phys. Chem. Chem. Phys. 1999, 1, (2), 275-283.
    145. Gonzalez, J. A.; De la Fuente, I. G.; Cobos, J. C., Thermodynamics of Mixtures with Strongly Negative Deviations from Raoult's Law. Part 3. Application of the DISQUAC Model to Mixtures of Triethylamine with Alkanols. Comparison with Dortmund UNIFAC and ERAS Results. Can. J. Chem. 2000, 78, (10), 1272-1284.
    146. González, J. A.; Garcié De La Fuentá, I.; Cobos, J. C., Thermodynamics of Mixtures with Strongly Negative Deviations from Raoult's Law. Part 4. Application of the DISQUAC Model to Mixtures of 1-Alkanols with Primary or Secondary Linear Amines. Comparison with Dortmund UNIFAC and ERAS Results. Fluid Phase Equilib. 2000, 168, (1), 31-58.
    147. Villa, S.; Riesco, N.; García de la Fuente, I.; González, J. A.; Cobos, J. C., Thermodynamics of Mixtures with Strongly Negative Deviations from Raoult's Law Part 5. Excess Molar Volumes at 298.15 K for 1-Alkanols + Dipropylamine Systems: Characterization in Terms of the ERAS Model. Fluid Phase Equilib. 2001, 190, (1-2), 113-125.
    148. Villa, S.; Riesco, N.; García de la fuente, I.; González, J. A.; Cobos, J. C., Thermodynamics of Mixtures with Strongly Negative Deviations from Raoult's Law Part 6. Excess Molar Volumes at 298.15 K for 1-Alkanols + Dibutylamine Systems. Characterization in Terms of the ERAS Model. Fluid Phase Equilib. 2002, 198, (2), 313-329.
    149. Villa, S.; Riesco, N.; García De La Fuente, I.; González, J. A.; Cobos, J. C., Thermodynamics of Mixtures with Strongly Negative Deviations from Raoult's Law. VII. Excess Molar Volumes at 25°C for 1-Alkanol + N-Methylbutylamine Systems - Characterization in Terms of the ERAS Model. J. Solution Chem. 2003, 32, (2), 179-194.
    150. Villa, S.; Riesco, N.; García De La Fuente, I.; González, J. A.; Cobos, J. C., Thermodynamics of Mixtures with Strongly Negative Deviations from Raoult's Law. Part 8. Excess Molar Volumes at 298.15 K for 1-Alkanol + Isomeric Amine (C6H15N) Systems: Characterization in Terms of the ERAS Model. Fluid Phase Equilib. 2004, 216, (1), 123-133.
    151. Villa, S.; Garriga, R.; Pérez, P.; Gracia, M.; González, J. A.; de la Fuente, I. G.; Cobos, J. C., Thermodynamics of Mixtures with Strongly Negative Deviations from Raoult's Law: Part 9. Vapor–Liquid Equilibria for the System 1-Propanol + di-n-Propylamine at Six Temperatures between 293.15 and 318.15 K. Fluid Phase Equilib. 2005, 231, (2), 211-220.
    152. Kwak, K.; Rosenfeld, D. E.; Chung, J. K.; Fayer, M. D., Solute−Solvent Complex Switching Dynamics of Chloroform between Acetone and Dimethylsulfoxide−Two-Dimensional IR Chemical Exchange Spectroscopy. J. Phys. Chem. B 2008, 112, (44), 13906-13915.
    153. Karplus, M.; McCammon, J. A., Molecular Dynamics Simulations of Biomolecules. Nat Struct Mol Biol 2002, 9, (9), 646-652.
    154. Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids. Clarendon Press: New York, 1989.
    155. Allen, M. P., Introduction to Molecular Dynamics Simulation. In Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes,, Attig, N.; Binder, K.; Grubmüller, H.; Kremer, K., Eds. John von Neumann Institute for Computing: Gustav-Stresemann-Institut, Bonn, Germany, Winter School, 29 February - 06 March 2004; Vol. 23.
    156. van der Spoel, D.; Lindahl, E.; Hess, B.; van Buuren, A. R.; Apol, E.; Meulenhoff, P. J.; Tieleman, D. P.; Sijbers, A. L. T. M.; Feenstra, K. A.; van Drunen, R.; Berendsen, H. J. C., Gromacs User Manual Version 4.5.4. 2010.
    157. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, (19), 5179-5197.
    158. MacKerell, A. D.; Bashford, D.; Bellott; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins+. J. Phys. Chem. B, 1998, 102, (18), 3586-3616.
    159. MacKerell, A. D.; Banavali, N.; Foloppe, N., Development and Current Status of the CHARMM Force Field for Nucleic Acids. Biopolymers 2000, 56, (4), 257-265.
    160. Jorgensen, W. L.; Tirado-Rives, J., The OPLS [Optimized Potentials for Liquid Simulations] Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, (6), 1657-1666.
    161. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, (45), 11225-11236.
    162. Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F., A Biomolecular Force Field based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and 53A6. J. Comp. Chem. 2004, 25, (13), 1656-1676.
    163. Challacombe, M.; White, C.; Head-Gordon, M., Periodic Boundary Conditions and the Fast Multipole Method. J. Chem. Phys. 1997, 107, (23), 10131-10140.
    164. Hockney, R. W.; Goel, S. P.; Eastwood, J. W., Quiet High-Resolution Computer Models of a Plasma. J. Comput. Phys 1974, 14, (2), 148-158.
    165. Verlet, L., Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, (1), 98-103.
    166. Darden, T.; York, D.; Pedersen, L., Particle Mesh Ewald: An N.log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, (12), 10089-10092.
    167. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R., Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, (8), 3684-3690.
    168. Nosé, S., A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, (2), 255-268.
    169. Hoover, W. G., Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, (3), 1695-1697.
    170. Bussi, G.; Donadio, D.; Parrinello, M., Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, (1), 014101-7.
    171. Parrinello, M.; Rahman, A., Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, (12), 7182-7190.
    172. Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R., GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comp. Phys. Comm. 1995, 91, (1–3), 43-56.
    173. Lindahl, E.; Hess, B.; van der Spoel, D., GROMACS 3.0: A Package for Molecular Simulation and Trajectory Analysis. J. Mol. Model. 2001, 7, (8), 306-317.
    174. van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C., GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, (16), 1701-1718.
    175. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, (3), 435-447.
    176. Kaminski, G.; Jorgensen, W. L., Performance of the AMBER94, MMFF94, and OPLS-AA Force Fields for Modeling Organic Liquids. J. Phys. Chem. 1996, 100, (46), 18010-18013.
    177. Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L., Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 2001, 105, (28), 6474-6487.
    178. Bennett, C. H., Efficient Estimation of Free Energy Differences from Monte Carlo Data. J. Comp. Phys. 1976, 22, (2), 245-268.
    179. CS ChemOffice, Cambridge Scientific Computing Inc.: Suite 61, 875 Massachusetts Avenue, Cambridge, MA 02139, USA.
    180. Ribeiro, A. A. S. T.; Horta, B. A. C.; de Alencastro, R. B., MKTOP: A Program for Automatic Construction of Molecular Topologies. J. Braz. Chem. Soc. 2008, 19, (7), 1433-1435.
    181. Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I., Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method. J. Comp. Chem. 2000, 21, (2), 132-146.
    182. Jakalian, A.; Jack, D. B.; Bayly, C. I., Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC model: II. Parameterization and Validation. J. Comp.Chem. 2002, 23, (16), 1623-1641.
    183. HyperChem(TM), Hypercube, Inc.: 1115 NW 4th Street, Gainesville, Florida 32601, USA.
    184. van der Spoel, D.; van Maaren, P. J.; Caleman, C., GROMACS Molecule & Liquid Database. Bioinformatics 2012, 28, (5), 752-753.
    185. Caleman, C.; van Maaren, P. J.; Hong, M.; Hub, J. S.; Costa, L. T.; van der Spoel, D., Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant. J. Chem. Theory Comput. 2011, 8, (1), 61-74.
    186. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.1, Gaussian, Inc.: Wallingford CT, 2009.
    187. Becke, A. D., Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, (7), 5648-5652.
    188. van Gunsteren, W. F.; Berendsen, H. J. C., A Leap-frog Algorithm for Stochastic Dynamics. Mol. Simul. 1988, 1, (3), 173-185.
    189. Hess, B., P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2007, 4, (1), 116-122.
    190. Flyvbjerg, H.; Petersen, H. G., Error Estimates on Averages of Correlated Data. J. Chem. Phys. 1989, 91, (1), 461-466.
    191. Hess, B., Determining the Shear Viscosity of Model Liquids from Molecular Dynamics Simulations. J. Chem. Phys. 2002, 116, (1), 209-217.
    192. Schneider, T.; Stoll, E., Molecular-Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions. Phys. Rev. B 1978, 17, (3), 1302-1322.
    193. Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J., Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization. ACM Trans. Math. Softw. 1997, 23, (4), 550-560.
    194. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, (1), 33-38.
    195. Wensink, E. J. W.; Hoffmann, A. C.; van Maaren, P. J.; van der Spoel, D., Dynamic Properties of Water/Alcohol Mixtures Studied by Computer Simulation. J. Chem. Phys. 2003, 119, (14), 7308-7317.
    196. Gosling, E. M.; McDonald, I. R.; Singer, K., On the Calculation by Molecular Dynamics of the Shear Viscosity of a Simple Fluid. Mol. Phys. 1973, 26, (6), 1475-1484.
    197. Kawasaki, K.; Gunton, J. D., Theory of Nonlinear Transport Processes: Nonlinear Shear Viscosity and Normal Stress Effects. Phys. Rev. A 1973, 8, (4), 2048-2064.
    198. Aparicio, S.; Alcalde, R.; Trenzado, J. L.; Caro, M. a. N.; Atilhan, M., Study of Dimethoxyethane/Ethanol Solutions. J. Phys. Chem. B 2011, 115, (28), 8864-8874.
    199. Jorgensen, W. L., The Many Roles of Computation in Drug Discovery. Science 2004, 303, (5665), 1813-1818.
    200. Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W., Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010, 6, (5), 1509-1519.
    201. Karplus, M., Molecular Dynamics Simulations of Biomolecules. Acc. Chem. Res. 2002, 35, (6), 321-323.
    202. Eisenberg, D.; McLachlan, A. D., Solvation Energy in Protein Folding and Binding. Nature 1986, 319, (6050), 199-203.
    203. Shoichet, B. K.; Leach, A. R.; Kuntz, I. D., Ligand Solvation in Molecular Docking. Proteins: Struct., Funct., Bioinform. 1999, 34, (1), 4-16.
    204. Shirts, M. R.; Pande, V. S., Solvation Free Energies of Amino Acid Side Chain Analogs for Common Molecular Mechanics Water Models. J. Chem. Phys. 2005, 122, (13), 134508-13.
    205. Olaj, O. F.; Lantschbauer, W., Simulation of Chain Arrangement in Bulk Polymer, 1. Chain Dimensions and Distribution of the End-to-End Distance. Makromol. Chem., Rapid Commun. 1982, 3, (12), 847-858.

    QR CODE