簡易檢索 / 詳目顯示

研究生: 謝冠丞
Guan-Cheng Xie
論文名稱: RuO2 (1 1 0)催化劑上甲烷轉化的深入研究-基於密度泛函理論和微觀動力學的結合研究
Insights into Methane conversion over RuO2 (1 1 0) catalyst-A combined DFT and Microkinetics studies
指導教授: 陳秀美
Hsiu-Mei Chen
江志強
Jyh-Chiang Jiang
口試委員: 蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 118
中文關鍵詞: RuO2 (1 1 0)表面甲烷轉化密度泛函理論微觀動力學模擬
外文關鍵詞: RuO2 (1 1 0) surface, methane conversion, density functional theory, microkinetic simulations
相關次數: 點閱:1289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天然氣和化石燃料的枯竭促使研究人員尋找能將甲烷轉化為更有價值化學品的技術。有前途的方法是甲烷的部分氧化(POM)和甲烷的氧化偶聯(OCM),它們可以分別直接將甲烷轉化為高價值的C1和C2產物。然而,在POM和OCM過程的每個催化步驟中都可能發生非選擇性氧化,產生熱力學穩定的COx物種。此外,用於激活甲烷C-H鍵的高溫(700-850 °C)和難以分離的副產物限制了C1和C2產物的收率和選擇性。儘管具有潛力,但這些挑戰阻礙了POM和OCM在工業應用中的效率和效果。基於RuO2的催化劑由於其高催化活性和穩定性而在異相催化中被使用了許多年。本研究使用修正的范德華密度泛函理論計算結合微觀動力學模擬,對RuO2 (1 1 0)表面對甲烷氧化的催化活性進行研究。結果表明,甲烷在RuO2 (1 1 0)表面具有0.60 eV的低速率決定步驟能壘。此外,發現通過CH4的選擇性脫氫,可以在RuO2 (1 1 0)表面上輕鬆形成CH3和CH2物種。由於CH2物種的高擴散性,使得甲烷在完全氧化的過程中可以遵循兩種不同的機制。一種是甲烷直接脫氫,另一種是經由CH2擴散後進一步反應。DFT計算結果顯示通過甲烷脫氫形成甲醛是容易的,其脫附能量(1.09 eV)低於進一步氧化(1.23 eV);而通過CH2物種擴散後所產生的甲醛的脫附(1.07 eV)與進一步氧化(1.04 eV)相互競爭。此外,CH2物種的自偶聯反應的活化能壘僅為0.10 eV,表明乙烯在RuO2 (1 1 0)表面上的形成在熱力學和動力學上都是可行的。生成的乙烯以0.97 eV的脫附能量從表面脫附。最後,微觀動力學結果證實甲烷活化可以發生在低於200 K的溫度下,並且乙烯和甲醛可以在室溫下解吸。低能壘和可行的乙烯和甲醛形成表明RuO2 (1 1 0)表面可以作為POM和OCM過程的有效催化劑。本研究的發現強調了計算方法在探索和理解催化過程中的重要性,並可以輔助設計高效和可持續轉化甲烷為增值化學品的催化劑。


    Natural gas and fossil fuel depletion have prompted researchers to look into technologies that can convert methane into more valuable chemicals. Promising approaches are partial oxidation of methane (POM) and oxidative coupling of methane (OCM), which can directly convert methane into high-value C1 and C2 products. However, non-selective oxidation can occur at each catalytic step during the processes of POM and OCM, producing thermodynamically stable COx species. Furthermore, the high temperature (700-850 °C) and difficult-to-separate by-products required to activate the C-H bond of methane limit the yield and selectivity of C1 and C2 products. Despite their potential, these challenges have hindered the efficiency and effectiveness of POM and OCM in industrial applications. RuO2-based catalysts have been utilized for many years in heterogeneous catalysis due to their high catalytic activity and stability. In this study, the catalytic activity of RuO2 (1 1 0) surfaces for methane oxidation was investigated using van der Waals-corrected density functional theory calculations combined with microkinetic simulations. The results show that methane activation on the RuO2 (1 1 0) surface has a low energy barrier of 0.60 eV. Besides, it was found that CH3 and CH2 species could be easily formed on the surface of RuO2 (1 1 0) through the selective dehydrogenation of CH4, and the diffusibility of CH2 species enables the complete oxidation mechanism of methane to be divided into direct dehydrogenation of methane and after CH2* diffusion. DFT calculations showed that the formaldehyde formation via methane dehydrogenation is facile, and its desorption energy (1.09 eV) is lower than that of further oxidation (1.23 eV); whereas the desorption of produced formaldehyde via CH2 species diffusion (1.07 eV) competes with oxidation (1.04 eV). In addition, the activation energy barrier for the self-coupling reaction of CH2 species is only 0.10 eV, indicating that the formation of ethylene on the RuO2 (1 1 0) surface is both thermodynamically and kinetically feasible. The produced ethylene desorbs from the surface with a desorption energy of 0.97 eV. Finally, the microkinetic results confirm that methane activation can occur at temperatures below 200 K, and ethylene and formaldehyde can be desorbed at room temperature. The low energy barriers and feasible ethylene and formaldehyde formation indicate that the RuO2 (1 1 0) surface can be an effective catalyst for the POM and OCM process. The findings of this study emphasize the importance of computational methods in exploring and comprehending catalytic processes and can assist in the design of catalysts for the efficient and sustainable conversion of methane to value-added chemicals.

    Contents Abstract I 摘要 III 致謝 V Contents VI List of Figures VIII List of Tables XII Chapter 1. Introduction 15 1.1 methane conversion 15 1.2 Ruthenium dioxide (RuO2) 19 1.3 Present study 21 Chapter 2. Theoretical Methodology 22 2.1 Computational details 22 2.1.1 DFT calculations 22 2.1.2 Microkinetic Modeling 24 2.2 Ruthenium dioxide model 25 2.2.1 Bulk 25 2.2.2 Surface 26 Chapter 3. Results and discussion 29 3.1 Methane adsorption on the stoichiometric RuO2 (1 1 0) surface 30 3.1.1 Electronic properties of methane adsorption 33 3.2 Methane conversion on the RuO2 (1 1 0) surface 39 3.2.1 Dehydrogenation kinetics 39 3.2.2 CHx diffusion on the RuO2 surface 47 3.2.3 Methanol formation 50 3.2.4 Formaldehyde formation 55 3.2.5 Complete oxidation of methane 64 3.3 C2 products formation on the RuO2 (1 1 0) surface 74 3.3.1 C-C coupling reactions 75 3.3.2 Subsequent reaction of C2H5* 79 3.4 Refresh mechanism of the reacted RuO2 surface 83 3.4.1 Water formation on hydrogen-covered RuO2 surface 83 3.4.2 Regeneration of the reduced RuO2 surface 92 3.5 Microkinetic simulations 95 Chapter 4. Conclusions 103 Appendix 105 Reference 105

    (1) Chong, Z. R.; Yang, S. H. B.; Babu, P.; Linga, P.; Li, X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633-1652.
    (2) Armor, J. N. Emerging importance of shale gas to both the energy & chemicals landscape. J. Energy Chem. 2013, 22 (1), 21-26.
    (3) Hu, W.; Lan, J.; Guo, Y.; Cao, X.-M.; Hu, P. Origin of efficient catalytic combustion of methane over Co3O4 (1 1 0): active low-coordination lattice oxygen and cooperation of multiple active sites. ACS Catal. 2016, 6 (8), 5508-5519.
    (4) Amos, R. An accurate ab initio study of the multipole moments and polarizabilities of methane. Mol. Phys. 1979, 38 (1), 33-45.
    (5) Yu, X.; Zhong, L.; Li, S. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations. Phys. Chem. Chem. Phys. 2021, 23 (8), 4963-4974.
    (6) Niu, J.; Wang, Y.; Qi, Y.; Dam, A. H.; Wang, H.; Zhu, Y.-A.; Holmen, A.; Ran, J.; Chen, D. New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study. Fuel 2020, 266, 117143.
    (7) Niu, J.; Liland, S. E.; Yang, J.; Rout, K. R.; Ran, J.; Chen, D. Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane. Chem. Eng. J. 2019, 377, 119763.
    (8) Abdulrasheed, A.; Jalil, A. A.; Gambo, Y.; Ibrahim, M.; Hambali, H. U.; Hamid, M. Y. S. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sust. Energ. Rev. 2019, 108, 175-193.
    (9) Yabe, T.; Sekine, Y. Methane conversion using carbon dioxide as an oxidizing agent: A review. Fuel Process. Technol. 2018, 181, 187-198.
    (10) Dry, M. E. The Fischer-Tropsch process: 1950-2000. Catal. Today 2002, 71 (3), 227-241.
    (11) Vernon, P. D. F.; Green, M. L. H.; Cheetham, A. K.; Ashcroft, A. T. Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion. Catal. Today 1992, 13 (2), 417-426.
    (12) Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B.; et al. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J. Catal. 2008, 259 (1), 147-160.
    (13) Schulz, H. Short history and present trends of Fischer-Tropsch synthesis. Appl. Catal. A: Gen. 1999, 186 (1), 3-12.
    (14) Lunsford, J. H. Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal. Today 2000, 63 (2), 165-174.
    (15) Argyle, M. D.; Bartholomew, C. H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts 2015, 5 (1), 145-269.
    (16) Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A: Gen. 2001, 212 (1), 17-60.
    (17) Karakaya, C.; Kee, R. J. Progress in the direct catalytic conversion of methane to fuels and chemicals. Prog. Energy Combust. Sci. 2016, 55, 60-97.
    (18) Zhang, Q.; He, D.; Zhu, Q. Recent progress in direct partial oxidation of methane to methanol. J. Nat. Gas Chem. 2003, 12 (2), 81-89.
    (19) da Silva, M. J. Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Process. Technol. 2016, 145, 42-61.
    (20) Alvarez-Galvan, M. C.; Mota, N.; Ojeda, M.; Rojas, S.; Navarro, R. M.; Fierro, J. L. G. Direct methane conversion routes to chemicals and fuels. Catal. Today 2011, 171 (1), 15-23.
    (21) Keller, G.; Bhasin, M. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J. Catal. 1982, 73 (1), 9-19.
    (22) Beck, B.; Fleischer, V.; Arndt, S.; Hevia, M. G.; Urakawa, A.; Hugo, P.; Schomäcker, R. Oxidative coupling of methane-A complex surface/gas phase mechanism with strong impact on the reaction engineering. Catal. Today 2014, 228, 212-218.
    (23) Lomonosov, V. I.; Sinev, M. Y. Oxidative coupling of methane: Mechanism and kinetics. Kinet. Catal. 2016, 57 (5), 647-676.
    (24) Kwapien, K.; Paier, J.; Sauer, J.; Geske, M.; Zavyalova, U.; Horn, R.; Schwach, P.; Trunschke, A.; Schlögl, R. Sites for methane activation on lithium‐doped magnesium oxide surfaces. Angew. Chem. Int. Ed. 2014, 53 (33), 8774-8778.
    (25) Luo, L.; Jin, Y.; Pan, H.; Zheng, X.; Wu, L.; You, R.; Huang, W. Distribution and role of Li in Li-doped MgO catalysts for oxidative coupling of methane. J. Catal. 2017, 346, 57-61.
    (26) Korf, S.; Roos, J.; Derksen, J.; Vreeman, J.; Van Ommen, J.; Ross, J. Oxidative coupling of methane over Ba/CaO catalysts: a comparison with Li/MgO. Applied catalysis 1990, 59 (1), 291-309.
    (27) Arndt, S.; Simon, U.; Heitz, S.; Berthold, A.; Beck, B.; Görke, O.; Epping, J.-D.; Otremba, T.; Aksu, Y.; Irran, E. Li-doped MgO from different preparative routes for the oxidative coupling of methane. Top. Catal. 2011, 54, 1266-1285.
    (28) Gonçalves, R. L.; Muniz, F. C.; Passos, F. B.; Schmal, M. Promoting effect of Ce on the oxidative coupling of methane catalysts. Catal. Lett. 2010, 135, 26-32.
    (29) Choudhary, V.; Rane, V. Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons. J. Catal. 1991, 130 (2), 411-422.
    (30) Sollier, B. M.; Bonne, M.; Khenoussi, N.; Michelin, L.; Miró, E. E.; Gómez, L. E.; Boix, A. V.; Lebeau, B. Synthesis and characterization of electrospun nanofibers of Sr-La-Ce oxides as catalysts for the oxidative coupling of methane. Ind. Eng. Chem. Res. 2020, 59 (25), 11419-11430.
    (31) Pyatnitskii, Y. I.; Bostan, A.; Raevskaya, L.; Nedil’Ko, S.; Dzyaz’Ko, A.; Zen’Kovich, E. Effect of the composition of Mn-, Co-and Ni-containing perovskites on their catalytic properties in the oxidative coupling of methane. Theor. Exp. Chem. 2005, 41, 117-121.
    (32) Ito, T.; Lunsford, J. H. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature 1985, 314, 721-722.
    (33) Otsuka, K.; Jinno, K.; Morikawa, A. Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane. J. Catal. 1986, 100 (2), 353-359.
    (34) Le Van, T.; Che, M.; Kermarec, M.; Louis, C.; Tatibouet, J. Structure sensitivity of the catalytic oxidative coupling of methane on lanthanum oxide. Catal. Lett. 1990, 6, 395-400.
    (35) Sugiyama, S.; Matsumura, Y.; Moffat, J. A comparative study of the oxides of lanthanum, cerium, praseodymium, and samarium as catalysts for the oxidative dehydrogenation of methane in the presence and absence of carbon tetrachloride. J. Catal. 1993, 139 (2), 338-350.
    (36) Fang, X.; Li, S.; Gu, J.; Yang, D. Preparation and characterization of W-Mn catalyst for oxidative coupling of methane. J. Mol. Catal 1992, 6, 255-261.
    (37) Arndt, S.; Otremba, T.; Simon, U.; Yildiz, M.; Schubert, H.; Schomäcker, R. Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Appl. Catal. A: Gen. 2012, 425, 53-61.
    (38) Wang, P.; Zhao, G.; Wang, Y.; Lu, Y. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst. Sci Adv 2017, 3 (6).
    (39) Wang, P.; Zhao, G.; Liu, Y.; Lu, Y. TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst for oxidative coupling of methane: Solution combustion synthesis and MnTiO3-dependent low-temperature activity improvement. Appl. Catal. A: Gen. 2017, 544, 77-83.
    (40) Uzunoglu, C.; Leba, A.; Yildirim, R. Oxidative coupling of methane over Mn-Na2WO4 catalyst supported by monolithic SiO2. Appl. Catal. A: Gen. 2017, 547, 22-29.
    (41) Yildiz, M.; Aksu, Y.; Simon, U.; Kailasam, K.; Goerke, O.; Rosowski, F.; Schomäcker, R.; Thomas, A.; Arndt, S. Enhanced catalytic performance of MnxOy-Na2WO4/SiO2 for the oxidative coupling of methane using an ordered mesoporous silica support. Chem. Commun. 2014, 50 (92), 14440-14442.
    (42) Ghose, R.; Hwang, H. T.; Varma, A. Oxidative coupling of methane using catalysts synthesized by solution combustion method: Catalyst optimization and kinetic studies. Appl. Catal. A: Gen. 2014, 472, 39-46.
    (43) Yildiz, M.; Simon, U.; Otremba, T.; Aksu, Y.; Kailasam, K.; Thomas, A.; Schomäcker, R.; Arndt, S. Support material variation for the MnxOy-Na2WO4/SiO2 catalyst. Catal. Today 2014, 228, 5-14.
    (44) Hiyoshi, N.; Ikeda, T. Oxidative coupling of methane over alkali chloride–Mn–Na2WO4/SiO2 catalysts: Promoting effect of molten alkali chloride. Fuel Process. Technol. 2015, 133, 29-34.
    (45) Yildiz, M.; Aksu, Y.; Simon, U.; Otremba, T.; Kailasam, K.; Göbel, C.; Girgsdies, F.; Görke, O.; Rosowski, F.; Thomas, A. Silica material variation for the MnxOy-Na2WO4/SiO2. Appl. Catal. A: Gen. 2016, 525, 168-179.
    (46) Zhang, Q.; Wang, J.; Wang, L.; Wang, P. High‐performance Mn2O3‐Na2WO4/SiO2‐TiO2 catalyst for the oxidative coupling of methane: TiO2‐modulated MnTiO3 formation for enhanced low‐temperature performance. ChemCatChem 2023, e202300193.
    (47) Fleischer, V.; Steuer, R.; Parishan, S.; Schomäcker, R. Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments. J. Catal. 2016, 341, 91-103.
    (48) Alexiadis, V.; Thybaut, J.; Kechagiopoulos, P.; Chaar, M.; Van Veen, A.; Muhler, M.; Marin, G. Oxidative coupling of methane: catalytic behaviour assessment via comprehensive microkinetic modelling. Appl. Catal. B 2014, 150, 496-505.
    (49) Mesters, C. A selection of recent advances in C1 chemistry. Annual Review of Chemical and Biomolecular Engineering 2016, 7, 223-238.
    (50) Laurent, S.; Boutry, S.; Muller, R. Metal oxide particles and their prospects for applications. In Iron oxide nanoparticles for biomedical applications, Elsevier, 2018; pp 3-42.
    (51) Lustemberg, P. G.; Palomino, R. M.; Gutiérrez, R. n. A.; Grinter, D. C.; Vorokhta, M.; Liu, Z.; Ramírez, P. J.; Matolín, V.; Ganduglia-Pirovano, M. V. n.; Senanayake, S. D. Direct conversion of methane to methanol on Ni-Ceria surfaces: metal-support interactions and water-enabled catalytic conversion by site blocking. J. Am. Chem. Soc. 2018, 140 (24), 7681-7687.
    (52) Shan, J.; Li, M.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551 (7682), 605-608.
    (53) Kwon, Y.; Kim, T. Y.; Kwon, G.; Yi, J.; Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 2017, 139 (48), 17694-17699.
    (54) Tang, Y.; Li, Y.; Fung, V.; Jiang, D.-e.; Huang, W.; Zhang, S.; Iwasawa, Y.; Sakata, T.; Nguyen, L.; Zhang, X. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 2018, 9 (1), 1231.
    (55) Zuo, Z.; Ramírez, P. J.; Senanayake, S. D.; Liu, P.; Rodriguez, J. A. Low-temperature conversion of methane to methanol on CeOx/Cu2O catalysts: water controlled activation of the C-H bond. J. Am. Chem. Soc. 2016, 138 (42), 13810-13813.
    (56) Wang, C.-C.; Siao, S. S.; Jiang, J.-C. C-H bond activation of methane via σ-d interaction on the IrO2(1 1 0) surface: density functional theory study. The Journal of Physical Chemistry C 2012, 116 (10), 6367-6370.
    (57) Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Low-temperature activation of methane on the IrO2(1 1 0) surface. Science 2017, 356 (6335), 299-303.
    (58) Kim, M.; Franklin, A. D.; Martin, R.; Bian, Y.; Weaver, J. F.; Asthagiri, A. Kinetics of low-temperature methane activation on IrO2(1 1 0): Role of local surface hydroxide species. J. Catal. 2020, 383, 181-192.
    (59) Over, H.; Kim, Y. D.; Seitsonen, A.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Atomic-scale structure and catalytic reactivity of the RuO2(1 1 0) surface. Science 2000, 287 (5457), 1474-1476.
    (60) Wang, C.-C.; Wu, J.-Y.; Pham, T. L.; Jiang, J.-C. Microkinetic simulation of ammonia oxidation on the RuO2(1 1 0) surface. ACS Catal. 2014, 4 (2), 639-648.
    (61) Hong, S.; Karim, A.; Rahman, T. S.; Jacobi, K.; Ertl, G. Selective oxidation of ammonia on RuO2(1 1 0): A combined DFT and KMC study. J. Catal. 2010, 276 (2), 371-381.
    (62) Seitsonen, A.; Crihan, D.; Knapp, M.; Resta, A.; Lundgren, E.; Andersen, J. N.; Over, H. Reaction mechanism of ammonia oxidation over RuO2(1 1 0): A combined theory/experiment approach. Surface science 2009, 603 (18), L113-L116.
    (63) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics 2010, 132 (15), 154104.
    (64) Filot, I.; Zijlstra, B.; Hensen, E. MKMCXX, a C++ program for constructing microkinetic models. 2018.
    (65) Wang, D.; Huang, J.; Liu, F.; Xu, X.; Fang, X.; Liu, J.; Xie, Y.; Wang, X. Rutile RuO2 dispersion on rutile and anatase TiO2 supports: The effects of support crystalline phase structure on the dispersion behaviors of the supported metal oxides. Catal. Today 2020, 339, 220-232.
    (66) Khorasani-Motlagh, M.; Noroozifar, M.; Yousefi, M. A simple new method to synthesize nanocrystalline ruthenium dioxide in the presence of octanoic acid as organic surfactant. International Journal of Nanoscience and Nanotechnology 2011, 7 (4), 167-172.
    (67) Ciobica, I.; Frechard, F.; Van Santen, R.; Kleyn, A.; Hafner, J. A DFT study of transition states for C-H activation on the Ru(0 0 0 1) surface. The Journal of Physical Chemistry B 2000, 104 (14), 3364-3369.
    (68) Wei, J.; Iglesia, E. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J. Catal. 2004, 225 (1), 116-127.
    (69) Wei, J.; Iglesia, E. Structural and mechanistic requirements for methane activation and chemical conversion on supported iridium clusters. Angew. Chem. Int. Ed. 2004, 43 (28), 3685-3688.
    (70) Trinchero, A.; Hellman, A.; Grönbeck, H. Methane oxidation over Pd and Pt studied by DFT and kinetic modeling. Surface science 2013, 616, 206-213.
    (71) Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H.; et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358 (6360), 223-227.
    (72) Osman, A. I.; Meudal, J.; Laffir, F.; Thompson, J.; Rooney, D. Enhanced catalytic activity of Ni on η-Al2O3 and ZSM-5 on addition of ceria zirconia for the partial oxidation of methane. Appl. Catal. B 2017, 212, 68-79.
    (73) Cargnello, M.; Jaén, J. J. D.; Garrido, J. C. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. J. C.; Gorte, R. J.; Fornasiero, P. Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3. Science 2012, 337 (6095), 713-717.
    (74) Ab Rahim, M. H.; Forde, M. M.; Jenkins, R. L.; Hammond, C.; He, Q.; Dimitratos, N.; Lopez‐Sanchez, J. A.; Carley, A. F.; Taylor, S. H.; Willock, D. J. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angew. Chem. Int. Ed. 2013, 52 (4), 1280-1284.
    (75) Song, H.; Meng, X.; Wang, Z.-j.; Wang, Z.; Chen, H.; Weng, Y.; Ichihara, F.; Oshikiri, M.; Kako, T.; Ye, J. Visible-Light-Mediated Methane Activation for Steam Methane Reforming under Mild Conditions: A Case Study of Rh/TiO2 Catalysts. ACS Catal. 2018, 8 (8), 7556-7565.
    (76) Yu, L.; Shao, Y.; Li, D. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl. Catal. B 2017, 204, 216-223.
    (77) Song, S.; Song, H.; Li, L.; Wang, S.; Chu, W.; Peng, K.; Meng, X.; Wang, Q.; Deng, B.; Liu, Q. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nature Catalysis 2021, 4 (12), 1032-1042.
    (78) Weaver, J. F.; Hakanoglu, C.; Antony, A.; Asthagiri, A. Alkane activation on crystalline metal oxide surfaces. Chem. Soc. Rev. 2014, 43 (22), 7536-7547.
    (79) Tang, L.; Zhang, Z.-g.; Qi, J.; Zhao, J.-r.; Feng, Y. The preparation and application of a new formaldehyde-free adhesive for plywood. Int. J. Adhes. Adhes. 2011, 31 (6), 507-512.
    (80) Zhang, Y.; Luo, X.; Wang, X.; Qian, K.; Zhao, R. Influence of temperature on formaldehyde emission parameters of dry building materials. Atmos. Environ. 2007, 41 (15), 3203-3216.
    (81) Arena, F.; Gatti, G.; Martra, G.; Coluccia, S.; Stievano, L.; Spadaro, L.; Famulari, P.; Parmaliana, A. Structure and reactivity in the selective oxidation of methane to formaldehyde of low-loaded FeOx/SiO2 catalysts. J. Catal. 2005, 231 (2), 365-380.
    (82) Nguyen, M.-T.; Mu, R.; Cantu, D. C.; Lyubinetsky, I.; Glezakou, V.-A.; Dohnálek, Z.; Rousseau, R. Dynamics, stability, and adsorption states of water on oxidized RuO2(1 1 0). The Journal of Physical Chemistry C 2017, 121 (34), 18505-18515.
    (83) Bossche, M. V. d.; Gronbeck, H. Methane oxidation over PdO(1 0 1) revealed by first-principles kinetic modeling. J. Am. Chem. Soc. 2015, 137 (37), 12035-12044.
    (84) Pham, T.; Leggesse, E.; Jiang, J. Ethylene formation by methane dehydrogenation and C-C coupling reaction on a stoichiometric IrO2(1 1 0) surface-a density functional theory investigation. Catalysis Science & Technology 2015, 5 (8), 4064-4071.
    (85) Liang, Z.; Kim, M.; Li, T.; Rai, R.; Asthagiri, A.; Weaver, J. F. Adsorption and oxidation of ethylene on the stoichiometric and O-rich RuO2(1 1 0) surfaces. The Journal of Physical Chemistry C 2017, 121 (37), 20375-20386.
    (86) Filot, I. A.; Van Santen, R. A.; Hensen, E. J. The optimally performing Fischer-Tropsch catalyst. Angew. Chem. Int. Ed. 2014, 53 (47), 12746-12750.

    無法下載圖示 全文公開日期 2025/08/15 (校內網路)
    全文公開日期 2025/08/15 (校外網路)
    全文公開日期 2025/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE