簡易檢索 / 詳目顯示

研究生: OKI SUPRADA
OKI SUPRADA OMPUSUNGGU
論文名稱: 以攝影測量方式分析多光譜三維微尺度微粒循跡測速儀之光學系統特徵
Optical Characterization of a Multi-Spectral 3D Micro Particle Tracking Velocimetry System by Photogrammetric Approach
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 林怡均
Yi-Jiun LIN
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 95
中文關鍵詞: 微粒影像測速儀微粒循跡測速儀攝影測量三維微型循跡測速儀
外文關鍵詞: Photogrammetric system, 3-D μ-PTV
相關次數: 點閱:239下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試提出一個以攝影測量(photogrammatric)方式分析描述多光譜三維微尺度微粒循跡測速儀之系統光學架構,以便簡化此技術中必須的三維重建過程。根據Maas所提出之研究,簡化的三維投影模型可被用來描述此系統中各不同攝影機位置之光學特徵。系統方程組中的未知係數可使用拍攝聚焦位置的校正影像時影像中所有已知微粒影像之位置進行最小平方法之多變數擬合決定之。利用這些係數則可反算微粒在空間中的真實位置。在此研究中首先以COMSOL軟體建構一個理想的數值計算模型進行驗證。結果顯示相當符合預期結果並顯示有承受小幅誤差之強健性,在單一平面內X,Y與Z軸位置相對誤差達到0.0000141%, 0.0000138%, and 0.0%。實際實驗驗證多平面之結果則顯現出顯著增加的誤差,X,Y與Z軸位置相對誤差達到0.439%, 0.497% 與 54.429%, 尤其以Z軸之誤差較大。 此原因是由於不同Z位置時的系統影像放大倍率改變所導致。未來將需要針對放大倍率隨Z軸位置的改變使用更進一步的系統方程式來減少Z軸方向的位置誤差,以增加系統的實用性。


    In this study, a procedure to characterize Multi-Spectral 3D Micro Particle Tracking Velocimetry System is proposed in order to simplify the 3-D reconstruction process. Based on Maas’s study, a simplified optical model is used to describe the camera view of the Multi-Spectral 3D Micro Particle Tracking Velocimetry (3-D μ-PTV) system. The unknown optical parameters can be determined by performing a calibration test and run the least square fit method to the calibration data. Once the coefficients are determined, the real particle coordinates can be determined using a set of photogrammetric equations. This approach is first verified by applying to an ideal numerical model built by COMSOL software. The simulation and experimental results show that 3-D μ-PTV system can be characterized by the photogrammetric system equations with limited success. The in-plane relative mean location error in X, Y and Z-axis are 0.0000141%, 0.0000138%, and 0.0% for the simulation tests of a single z location. In the experimental system, the relative mean location errors are 0.439%, 0.497%, and 54.429% of X, Y and Z-axis, respectively. Significant location errors are found in Z-axis, which is due to the changes of magnification at difference Z-axis position. Extra equations are needed to derive the magnification changing and more work needs to be done to reduce the error of the z position determination.

    Contents 摘要 2 ABSTRACT 3 ACKNOWLEDGEMENTS 5 LIST OF TABLES 8 LIST OF FIGURES 9 1 INTRODUCTION 1 1.1 Background 1 1.2 Literature Survey 2 1.2.1 Particle Image Velocimetry and Particle Tracking Velocimetry 2 1.2.2 Three-Dimensional Techniques 6 1.3 Objective 15 1.4 Structure of Thesis 16 2 EXPERIMENT METHODS 17 2.1 Theoretical Background 17 2.1.1 Photogrammetric System Concept by Maas [6] 17 2.2 System Concepts and Mathematical Description 19 2.2.1 Concept of Three-Dimensional Micro-Particle Tracking Velocimetry 19 2.2.2 Mathematical Description of The Current System 21 2.2.3 The Snell’s Law 22 2.2.4 Modification of Maas’s Equations 23 2.3 Data Processing 25 2.3.1 Post-processing of Calibration Data using Least-Square-Fit Method 25 2.4 Optical System Simulation 27 2.4.1 Simulation Model Geometry 27 2.4.2 Simulation of the Calibration Image 28 2.5 Experimental Method 29 2.5.1 Hardware Setup 30 2.5.2 Calibration Procedure 41 3 RESULT AND DISCUSSION 53 3.1 Optical Characterizations of the Ideal Numerical System 53 3.2 Optical Characterizations of the Multispectral 3-D μ-PTV System using Experimental Images 62 3.3 Discussion 68 4 CONCLUSION AND FUTURE WORK 70 4.1 Conclusions 70 4.2 Future Works 71 5 Appendix 74

    [1] R. J. Adrian, "Particle Image Velocimetry," 2011. Cambridge University Press, 32 Avenue of the Americas, New York
    [2] S. M Soloff, R. Adrian, and Z. C. Liu, Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry. 1999, p. 1441.
    [3] T. Dracos, "Particle Tracking Velocimetry (PTV)," in Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques: Lecture Notes from the Short Course held in Zürich, Switzerland, 3–6 September 1996, T. Dracos, Ed. Dordrecht: Springer Netherlands, 1996, pp. 155-160.
    [4] H. G. Maas, A. Gruen, and D. Papantoniou, "Particle tracking velocimetry in three-dimensional flows," Experiments in Fluids, journal article vol. 15, no. 2, pp. 133-146, July 01 1993.
    [5] G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, "Tomographic particle image velocimetry," Experiments in Fluids, journal article vol. 41, no. 6, pp. 933-947, December 01 2006 b.
    [6] G. E. Elsinga, F. Scarano, and B. W. van Oudheusden, "Experimental assessment of Tomographic-PIV accuracy " 13th Int Symp on Applications of Laser Techniques to Fluid Mechanics, journal article December 26-29 2006 a.
    [7] C. E. Willert and M. Gharib, "Three-dimensional particle imaging with a single camera," Experiments in Fluids, journal article vol. 12, no. 6, pp. 353-358, April 01 1992.
    [8] F. Pereira, J. Lu, E. Castaño-Graff, and M. Gharib, "Microscale 3D flow mapping with μDDPIV," Experiments in Fluids, journal article vol. 42, no. 4, pp. 589-599, April 01 2007.
    [9] J. Lu, F. Pereira, S. E. Fraser, and M. Gharib, "Three-dimensional real-time imaging of cardiac cell motions in living embryos," 2008, vol. 13, p. 8: SPIE.
    [10] H.-G. Maas, "complexity analysis for the establishment of image correspondence of dense spatial target fields," International Archives of Photogrammetric and Remote Sensing vol. XXIX, p. 6, 1992.
    [11] W.-H. Tien, D. Dabiri, and J. R. Hove, Color-coded three-dimensional micro particle tracking velocimetry and application to micro backward-facing step flows Application of Laser Techniques to Fluid Mechanics 2012. 2014.
    [12] Y.-C. Wang, "Improvement, Optical Performance Evaluation and Experimental Validation of Multi-Spectral Three-Dimensional Micro Particle Tracking Velocimetry," 2017: Master, Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan.
    [13] T. Dracos, M. Virant, and H.-G. Maas, "Three-dimensional particle-tracking velocimetry based on photogrammetric determination of particle coordinates," in SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, 1993, vol. 2005, p. 10: SPIE.
    [14] M. Virant and T. Dracos, "Establishment of a Videogrammetric PTV System," in Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques: Lecture Notes from the Short Course held in Zürich, Switzerland, 3–6 September 1996, T. Dracos, Ed. Dordrecht: Springer Netherlands, 1996, pp. 229-254.
    [15] D. D. Wei-Hsin Tien, Chair James C. Hermanson Alberto Aliseda, "3-D Particle Tracking Velocimetry: Development and Applications in Small Scale Flows," 2013.

    QR CODE