簡易檢索 / 詳目顯示

研究生: 張詠智
Yung-Chih Chang
論文名稱: 再生瀝青混凝土老化瀝青有效反應量 與永久變形行為之評估
Assessing Active Asphalt Content and Rutting Potential of Reclaimed Asphalt Concrete
指導教授: 廖敏志
Min-Chih Liao
口試委員: 黃兆龍
Chao-Lung Hwang
陳建旭
Jian-Shiuh Chen
廖敏志
Min-Chih Liao
蘇育民
Yu-Min Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 129
中文關鍵詞: RAP老化瀝青有效反應量流變性質永久變形行為攝影測量
外文關鍵詞: RAP, Active asphalt content, Rheology, Rutting, Photogrammetry
相關次數: 點閱:315下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於瀝青混凝土具有可回收再利用之特性,且多數研究結果指出使用瀝青回收料能提升再生瀝青混凝土之性能,亦可滿足經濟與環保性概念之需求。本研究採用兩種RAP添加方式,並以25%、40%及70%重量百分比下的添加量進行研究,探討再生瀝青混凝土的工程性質與瀝青流變性對永久變形行為之影響,並提出改善建議。本研究參照英國TRL之再生瀝青混凝土配比設計指南,針對老化瀝青之有效反應量,提出一個新的方法找出各試體之有效反應量進行再生瀝青混凝土配比設計。利用溫度與頻率掃描試驗找出瀝青之流變特性,配合再生瀝青混凝土的車轍試驗與力學試驗結果探討再生瀝青混凝土的永久變形行為,結果顯示,RAP添加量為40%之再生瀝青混凝土具有較高之老化瀝青有效反應量,且車轍試驗之塑性變形階段永久變形結果與流變性能一致,而孔隙率與級配影響了壓密階段與潛變階段之變形量,最後,利用攝影測量能清楚分析瀝青混凝土試體之整體變形,而測微器僅能量測單點之位移量。影響瀝青混凝土永久變形最重要的因素是級配之正確性,因大量使用RAP會使粒徑分佈曲線偏細,偏離目標級配曲線造成強度大幅降低。因此,本實驗建議將不同級配之RAP分開儲放及使用,提高級配之正確性,進而提高再生瀝青混凝土強度。


    To help address the built environmental issues of asphalt recycling and pavement sustainability, strategies that make asphalt pavements recyclable and renewable have been investigated through laboratory measurements. In this study, the effects of asphalt rheology and reclaimed asphalt pavement (RAP) content on the engineering properties and permanent deformation of the recycled asphalt concrete (RAC) were investigated. In addition, a new method was developed to obtain the active asphalt binder content within the aged asphalt based on the TRL (Transportation Research Laboratory) best practice guide for recycling. The frequency sweeps testing using a dynamic shear rheometer was also conducted on the recycled asphalt binders to evaluate the rutting potential of the RAC. Test results showed that the RAC incorporating 40% RAP possessed the higher active asphalt binder content in terms of the Marshall stability. For the rutting performance of the RAC, air void content as well as the aggregate gradation played important roles on the densification and creep stages. The rheological behavior of the asphalt binder considerably affected the tertiary stage during the testing. It was also found that the aggregate gradation tended to be finer when the RAP content was added up to 70%, leading to the worst rutting performance of the RACs. In addition, the photogrammetry technique could be employed to measure the deformation depth and clearly interpret the distress modes of the RAC specimens during the wheel track testing.

    摘要 I Abstract II 致謝 III 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 3 1.4研究範圍 3 第二章 文獻回顧 4 2.1瀝青老化 4 2.1.1瀝青老化的化學反應 4 2.1.2瀝青老化機制 6 2.1.3瀝青還原劑與老化瀝青 7 2.2瀝青流變行為 9 2.2.1流變學原理 9 2.2.2時間/溫度重疊原理 11 2.2.3瀝青流變參數與鋪面績效之關聯性 14 2.3再生瀝青混凝土 20 2.3.1再生瀝青混凝土之材料特性 20 2.3.2 RAP 的黑石頭現象 21 2.3.3瀝青薄膜厚度與粒料比表面積 23 2.4 RAP配比設計 24 2.4.1美國瀝青協會RAP配比設計方法 24 2.4.2英國TRL建議再生瀝青混凝土配比設計方法 26 2.5 RAP有效反應量 30 2.5.1添加比例對有效反應量之影響 30 2.5.2粒料比表面積對有效反應量之影響 31 2.5.3利用RAP的比表面積計算薄膜厚度 32 2.6車轍試驗 33 2.6.1車轍輪跡性質預測 33 2.6.2車轍破壞機制 34 2.7 RAP對熱拌瀝青車轍性能的影響 35 2.7.1使用RAP對瀝青混凝土車轍性能的影響 35 2.7.2 使用再生瀝青混凝土的冒油問題 36 2.8攝影測量 38 2.8.1攝影測量原理 38 2.8.2攝影測量方法 38 2.8.3影像相關法 39 2.8.4數據分析之重要參數 41 第三章 研究計畫 43 3.1 試驗內容 43 3.2試驗流程 44 3.3試驗材料 45 3.3.1天然粒料 45 3.3.2瀝青 46 3.3.3回收粒料 46 3.3.4老化瀝青 46 3.4瀝青試驗 47 3.4.1針入度試驗 47 3.4.2軟化點試驗 48 3.4.3 Brookfield黏滯度試驗 49 3.4.4溫度與頻率掃描試驗 50 3.5粒料試驗 52 3.5.1粗粒料比重及吸水率試驗 52 3.5.2細粒料比重及吸水率試驗 53 3.5.3扁長率試驗 54 3.5.4真空濃縮萃取試驗 55 3.5.5 網籃法垂流試驗 56 3.5.6 RAP含油量測定 57 3.6 RAP配比設計 61 3.6.1馬歇爾配比設計法 61 3.6.2再生瀝青混凝土馬歇爾配比設計 64 3.6.3馬歇爾穩定值與流度值試驗 66 3.7 力學性質試驗 67 3.7.1間接張力試驗 67 3.7.2浸水剝脫試驗 68 3.8鋪面績效試驗 70 3.8.1車轍試驗 70 3.8.2攝影測量模擬車轍模型 71 第四章 試驗結果分析與討論 73 4.1材料基本性質 73 4.1.1瀝青黏結料 73 4.1.2粒料 74 4.2瀝青混凝土配比設計 78 4.2.1新鮮瀝青混凝土馬歇爾配比設計 78 4.2.2再生瀝青混凝土配比設計 80 4.2.3老化瀝青有效反應量 83 4.3流變試驗 86 4.3.1黏滯度 86 4.3.2相位角(δ)與複合剪切模數(G*) 87 4.3.3複合剪切黏度值 88 4.3.4抗車轍參數G*/sinδ 89 4.3.5瀝青鋪面績效等級規範 92 4.3.6主曲線 93 4.4 力學試驗 95 4.4.1間接張力試驗 95 4.4.2浸水剝脫試驗 95 4.4.4篩分析試驗 96 4.4.5造成粒徑分佈失衡的原因 98 4.5績效評估試驗 100 4.5.1車轍試驗 100 4.5.2車轍試驗結果與討論 104 4.5.3瀝青黏結料的影響 106 4.5.4粒料架構的影響 107 4.5.5利用攝影測量探討破壞狀態 108 第五章 結論與建議 112 5.1結論 112 5.2建議 113 參考文獻 114

    林志棟、廖溪坤、林秉祁、王睿懋(2000),「台灣地區再生瀝青混凝土成效規範
    初步擬定之研究」,土木水利,第二十七卷,第三期。
    林東慶(2004),「依據瀝青性質評估再生瀝青混凝土添加比例」,碩士論文,國立成功大學,臺南。
    陳建旭、陳世梵、廖敏志、黃碩偉 (2015),「瀝青組成、老化、還原與應用」,
    台灣公路工程,第四十一卷,第七期。
    蔡信輝(2001),「探討改質瀝青之最佳含量及研擬規範」,碩士論文,國立成功大學,台南。
    邱奕翔(2007),「再生瀝青混凝土之化學組成探討」,碩士論文,中華大學,新竹。
    彭柏勳(2016),「應用數位影像相關法於機械系統與土木結構之變形及動態特性量測」,碩士論文,國立台灣大學,台北。
    Ashish, P. K., Singh, D. and Bohm, S. (2016). ʽʽ Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder’’, Construction and Building Materials, 113, pp.341-350.
    Asphalt Institute (1994), Performance Graded Asphalt Binder Specification and Test, Asphalt Institute Superpave Series, No.1 (SP-1).
    Bressi, S., Dumont, A.G. and Partl, M.N. (2015). ʽʽ Cluster phenomenon and partial differential aging in RAP mixtures’’, Construction and Building Materials, 99, pp.288-297.
    Bressi, S., Dumont, A.G and Partl, M.N. (2016a). ʽʽAn advanced methodology for the mix design optimization of hot mix asphalt’’, Materials and Design, pp.174-185.
    Bressi, S., Dumont, A.G and Partl, M.N. (2016b).ʽʽ A framework for characterizing RAP clustering in asphalt concrete mixtures’’, Construction and Building Materials, 106, p.564-574.
    Colbert, B. and You, Z. (2012) .ʽʽThe determination of mechanical performance of laboratory produced hot mix asphalt mixtures using controlled RAP and virgin aggregate size fractions’’, Construction and Building Materials, 26(1), pp.655–662.
    Christensen, D., Anderson, D., Bahia, R., Sharma, M.G. and Antie, C. (1994). ʽʽBinder Characterization and Evalution Volume 3: Physical Characterization’’, Strategic Highway Research Program, SHRP-A369.
    Cavalli, M.C., Zaumanis, M., Mazzaa, E., Partla, M.N. and Poulikakosa, L.D.
    (2018). ʽʽEffect of ageing on the mechanical and chemical properties of
    binder fromRAP treated with bio-based rejuvenators ’’, Composites Part
    B, 141, pp.174–181.
    Carswell, J.C., Widyatmoko, J.H. and Tay, R. (2010). ''Best practice guide for recycling into surface course'', Road Note RN43, Transport Research Laboratory (TRL).
    Fakhri, M.and Hosseini, S. (2017). ʽʽ Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion’’, Construction and Building Materials, 134, pp.626-640.
    Huang, B., Li, G., Vukosavljevic, D., Shu, X. and Egan, B.K. (2005). ʽʽLaboratory Investigation of Mixing HMA with RAP’’, Annual Meeting of Transportation Research Board, Washington, D.C. (CD-ROM).
    Im, S. K., Pravat and Zhou, F. (2016). ʽʽ Development of new mix design method for asphalt mixtures containing RAP and rejuvenators’’, Construction and Building Materials, 115, pp.727-734.
    Kingery, W.R., Zhang, Z. and Zuo, G. (2004). ʽʽLaboratory Study of Fatigue Characteristics of HMA Surface Mixtures Contining RAP’’, TRB 2004 Annual Meeting CD-ROM.
    Marateanu, M. and Anderson, D.A. (1996). “Time-Temperature Dependency of Asphalt Binder-An Improved Model”, Journal of the association of asphalt Paving Technologists, Vol.65, pp.408-448.
    Madrid, R.C., Davison R.R. and Glover G.J. (2000). “Compositional Evaluation of Asphalt under Recycling Agents” ,Petroleum Science and Technology, Vol.18, pp.153-175.
    Morea, F., Zerbino, R. and Agnusdei J. (2013). “Improvements on asphalt mixtures rutting performance characterization by the use of low shear viscosity”, Materials and Structures, Vol.46, pp.267–276.
    Ma, T. W., Hao. Huang, X. W., Zilong and Xiao, F. (2015). ʽʽLaboratory performance characteristics of high modulus asphalt mixturewith high-content RAP’’, Construction and Building Materials, 101, pp. 975–982.
    Nejad, F. M., Azarhoosh, A., Hamedi, G.H. and Roshani, H. (2014). ʽʽ Rutting performance prediction of warm mix asphalt containing reclaimedasphalt pavements’’, Road Materials and Pavement Design, 15, pp.207-219.
    Nguyen, H.V. (2013). ʽʽEffects of mixing procedures and rap sizes on
    stiffness distribution of hotrecycled asphalt mixtures’’, Construction and
    Building Materials, 47, pp.728-742.
    Noferini, L., Simone, A., Sangiorgi, C. and Mazzotta, F. (2017). ʽʽ Investigation on performances of asphalt mixtures made withReclaimed Asphalt Pavement: Effects of interaction between virginand RAP bitumen’’, International Journal of Pavement Research and Technology, 10, pp.322-332.
    Ongel, A. and Hugener, M. (2014). ʽʽAging of bituminous mixes for RAP simulation’’, Construction and Building Materials, 68, pp.49-54.
    Riccardi, C., Falchetto, A.C., Losa, M. and Wistuba, M.P. (2016). ʽʽRheological modeling of asphalt binder and asphalt mortarcontaining recycled asphalt material’’, Materials and Structures, 49, pp.4167-4183.
    Riccardi, C.B., Carrión, A.J., Presti, D.L., Falchetto, A.C., Losa, M. and Wistuba, M. (2016). ʽʽ A new procedure to determine the rheological properties of RAP binderand corresponding bituminous blends’’, Construction and Building Materials, 154, pp.361-372.
    Read, J., and Hunter, N. (2015). ʽʽThe Shell Bitumen Handbook’’, London, Thomas Telford Publishing.
    Solaimanian, M. and Tahmoressi, M. (1996) ʽʽVariability analysis of Hot-Mix asphalt concrete containing high percentage of RAP’’, Transportation Research Record 1543, pp.89-96.
    Soleymani, H.R., Anderson, M., Mcdaniel, R. and Abdelrahman, M. (2000). ʽʽInvestigation of the black rock issue for recycled asphalt mixtures’’, Journal of the Association of Asphalt Paving Technologists, Vol.69, pp.366-390.
    Tran, N.H., Taylor, A. and Willis R. (2012). ʽʽEffect of rejuvenator on performance properties of HMA mixtures with high RAP and RAS contects’’, NCAT Report 12-05, Auburn University, Auburn, Alabana.
    Yu, S., Shen, S., Zhang, C., Zhang, W. and Jia, X. (2017). ʽʽEvaluation of the blending effectiveness of reclaimed asphalt pavement binder ’’Journal of Materails in Civil Engineering, 04017230-1-04017230-8.
    Yusoff, N.I., Chailleux, E. and Airey, G.D. (2011). ʽʽA comparative study of the influence of shift factor equation on master curve construction’’, International Journal of Pavement Research and Technology, 4, pp.324-336.

    無法下載圖示 全文公開日期 2023/06/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE