簡易檢索 / 詳目顯示

研究生: 蘇育仟
YU-CHIEN SU
論文名稱: 瀝青混凝土之抗裂-車轍平衡績效評估
Balancing Cracking-Rutting Performance for Asphalt Mixtures
指導教授: 陳沛清
Pei-Ching Chen
廖敏志
Min-Chih Liao
口試委員: 陳建旭
蘇育民
林彥宇
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 105
中文關鍵詞: 疲勞車轍勁度折減50%分析法SxN 峰值分析法耗散能量變化率(RDEC)Francken Model
外文關鍵詞: Fatigue, Rutting, Stiffness Reduction 50% Analysis, SxN Peak Analysis, Ratio of Dissipated Energy Change (RDEC), Francken Model
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 公路為現今交通運輸不可或缺的基礎建設,路面長期受到車輛反覆加載造成路面變形及開裂,產生微裂縫後逐漸成長形成巨觀裂縫,加上臺灣為多雨的氣候,水從裂縫進入造成瀝青混凝土結構破壞,導致路面服務年限下降,因此路面的抗裂與抗變形為重要的課題之一,然而,許多研究顯示路面的抗裂與抗變形之設計互有牽制之作用,為使路面能達到多方面性能,導入平衡設計法觀念同時提高瀝青混凝土耐久性和穩定性。本研究使用不同的標稱最大粒徑(分別為19mm與25mm)及不同的瀝青膠泥類型(分別為AC-10與AC-20),探討四組配比設計在最佳瀝青含量時是否有達到平衡設計之績效,採用之績效試驗為四點彎曲試驗(Four Point Bending Test, 4PBT)和漢堡輪跡試驗(Hamburg Wheel-Tracking Test,HWTT),4PBT為模擬在實際交通量反覆加載之疲勞破壞,HWTT為抵抗車轍的能力及水侵害的敏感性。本研究採用勁度折減50%分析法、SxN 峰值分析法與耗散能量變化率(Ratio of Dissipated Energy Change, RDEC)進行分析與探討,在三種分析法有不同之結果,其中RDEC 法定義之疲勞壽命較佳,而勁度折減50%分析法相較於其他兩種方法定義之疲勞壽命較保守,亦驗證可能不適用於定義瀝青混凝土之疲勞壽命。本研究探討車轍曲線並以Francken Model 擬合,藉由MATLAB 可以得出Francken Model 之四個迴歸係數A、B、C 與D,結果顯示AC-20 瀝青膠泥較AC-10 適合用於抵抗車轍變形。將4PBT 與HWTT 之試驗結果結合以平衡設計觀念分析,其中標稱最大粒徑為25mm 且瀝青膠泥為AC-20具最佳平衡績效。


    Nowadays, asphalt pavement has played an important role in transportation infrastructure, but it issubjected to long-term repeated loading by vehicles, resulting in two primary distress modes of rutting and cracking. Balancing crack and deformation resistance of the pavement is one of the important issues at the mix design stage. The concept of balanced design method has recently been introduced in order to improve the durability and stability of asphalt concrete. The variables investigated in this study include nominal maximum aggregate size (19mm and 25mm) and asphalt grade (AC-10 and AC-20). The performance was evaluated by conducting Four Point Bending Test (4PBT) and Hamburg Wheel-Tracking Test (HWTT) on asphalt mixtures. 4PBT was used to simulate the fatigue failure of pavement by repeated loading. HWTT was adopted to assessed the resistance to rutting and moisture susceptibility. In addition, the 50% stiffness reduction method, SxN peak analysis method and the Ratio of Dissipated Energy Change (RDEC) were utilized for the definition of fatigue failure. The 50% stiffness reduction method was found to be more conservative than the other two methods in order to determine the fatigue life. Regarding the rutting performance, the HWTT experimental curves can be fitted with the Francken Model. The four regression coefficients A, B, C and D of the Model were obtained by means of MATLAB. The results show that the use of AC-20 asphalt for producing asphalt concretes hows better rutting resistance compared to the use of AC-10. In terms of 4PBT and HWTT results to analyze the balanced design concept, the nominal maximum aggregate size of 25mm together withAC-20 asphalt possesses the best balanced performance.

    摘要 I ABSTRACT II 目錄 III 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 2 1.4 研究範圍 3 第二章 文獻回顧 4 2.1 瀝青混凝土疲勞行為與四點彎曲試驗 4 2.1.1 疲勞行為 4 2.1.2 勁度折減50%分析法 5 2.1.3 能量法 6 2.1.4 各分析方法比較 9 2.2 瀝青混凝土車轍行為與輪跡試驗 10 2.2.1 車轍行為 10 2.2.2 車轍實驗室曲線之擬合 12 2.2.3 改良式輪跡試驗 15 2.3 平衡配比概念 17 第三章 研究計畫 19 3.1 試驗範圍 19 3.2 研究流程 21 3.3 試驗材料 22 3.4 試驗方法與設備 24 3.4.1 針入度試驗 24 3.4.2 軟化點試驗 25 3.4.3 Brookfield旋轉黏滯度試驗 26 3.4.4 粗粒料比重及吸水率試驗: 27 3.4.5 細粒料比重及吸水率試驗: 29 3.4.6 馬歇爾配比試驗方法 31 3.4.7 四點彎曲試驗(Four Point Bending Test, 4PBT) 35 3.4.8 漢堡輪跡試驗(Hamburg Wheel-Tracking Test,HWTT) 40 第四章 結果與分析 43 4.1 瀝青膠泥基本物性分析 43 4.2 粒料物理性質與級配 45 4.3 馬歇爾配比設計 49 4.4 四點彎曲試驗 52 4.4.1 四點彎曲試驗基本物理試驗 53 4.4.1 勁度折減50%分析法 54 4.4.2 SxN峰值分析法 57 4.4.3 耗散能量變化率(RDEC) 61 4.4.4 分析法比較 68 4.4.5 累積耗散能量 69 4.5 漢堡輪跡試驗 78 4.5.1 車轍深度與瀝青含量關係 78 4.5.2 Francken Model車轍曲線擬合 80 4.5.3 Francken Model模擬之FN與水敏感性評估 83 4.6 瀝青混凝土成效平衡設計 85 第五章 結論與建議 87 5.1 結論 87 5.2 建議 88 參考文獻 89

    中華民國國家標準。 2016。 鋪面柏油-針入度分級。 CNS 2260。 經濟部: 標準檢驗局。
    公路總局。 2019。 瀝青混凝土之一般要求。 施工說明書第02741章。 交通部: 公路總局。
    AASHTO. 2017. Standard Method of Test for Determining the Fatigue Life of Compacted Asphalt Mixtures Subjected to Repeated Flexural Bending. AASHTO T321-17(2021). Washington, DC: AASHTO.
    AASHTO. 2019. Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures. AASHTO T324-19. Washington, DC: AASHTO.
    AASHTO. 2020. Standard Practice for Balanced Design of Asphalt Mixtures. AASHTO PP105. Washington, DC: AASHTO.
    Al-Khayat, H., Newcomb, D.E., Zhou, F., and Deusen, D.V. 2021. “Evaluation of the Minnesota Asphalt Mixtures Based on Balanced Mix-Design Approach.” Journal of Transportation Engineering, Part B: Pavements, ASCE, 147(3): 04021045, DOI: 10.1061/JPEODX.0000298.
    Asphalt Institute. 2014. Asphalt Mix Design Methods (Seventh Edition). AI MS-2, Lexington, KY: Asphalt Institute.
    ASTM. 2010. Standard Specification for Hot-Mixed, Hot-Laid Bituminous Paving Mixtures. ASTM D3515-01. West Conshohocken, PA: ASTM.
    ASTM. 2015a. Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM D4402/D4402M-15. West Conshohocken, PA: ASTM.
    ASTM. 2015b. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM C127-15. West Conshohocken, PA: ASTM.
    ASTM. 2015c. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM C128-15. West Conshohocken, PA: ASTM.
    ASTM. 2015d. Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. ASTM D6927-15. West Conshohocken, PA: ASTM.
    ASTM. 2018. Standard Specification for Viscosity-Graded Asphalt Binder for Use in Pavement Construction. ASTM D3381/D3381M-18. West Conshohocken, PA: ASTM.
    ASTM. 2020a. Standard Test Method for Penetration of Bituminous Materials. ASTM D5/D5M-20. West Conshohocken, PA: ASTM.
    ASTM. 2020b. Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus. ASTM D6926-20. West Conshohocken, PA: ASTM.
    ASTM. 2021. Standard Test Method for Determining Fatigue Failure of Asphalt-Aggregate Mixtures with the Four-Point Beam Fatigue Device. ASTM D8237-21. West Conshohocken, PA: ASTM.
    Biligiri, K.P., Kaloush, K.E., Mamlouk, M.S., and Witczak, M.W. 2007. “Rational Modeling of Tertiary Flow for Asphalt Mixtures.” Journal of the Transportation Board, 2001, pp 63-72, Washington, D.C.
    Carpenter, SH. and Shen, S. 2006. “Dissipated Energy Approach to Study Hot-Mix Asphalt Healing in Fatigue.” Journal of the Transportation Board, 1970, pp 178-185, Washington, D.C.
    Di Benedetto, H., Ashayer Soltani, A., Chaverot, P. 1996. “Fatigue damage for bituminous mixtures: a pertinent approach.” Journal of the Association of Asphalt Paving Technologists, 65, pp.142–158.
    Ishaq, M.A. and Giustozzi, F. 2021. “Correlation between Rheological Fatigue Tests on Bitumen and Various Cracking Tests on Asphalt Mixtures.” Materials 2021, 14, 7839. https://doi.org/10.3390/ma14247839.
    Lou, K., Wu, X., Xiao, P., and Zhang, C. 2021. “Investigation on Fatigue Performance of Asphalt Mixture Reinforced by Basalt Fiber.” Materials 14, 5596, DOI: 10.3390/ma14195596.
    Moghaddam, T. B., Karim, M. R., and Abdelaziz, M. 2011. “A review on fatigue and rutting performance of asphalt mixes.” Scientific Research and Essays, Vol. 6(4), pp. 670-682, DOI: 10.5897/SRE10.946.
    Newcomb, D. E., and F. Zhou. 2018. “Balanced design of asphalt mixtures.” Final Rep. No. MN/RC 2018-22. St. Paul, MN: Minnesota DOT, Research Services and Library.
    Omrani, H., Tanakizadeh, A., Ghanizadeh, A. R.,and Fakhri M. 2017. “Investigating different approaches for evaluation of fatigue performance of warm mix asphalt mixtures.” Materials and Structures, 50, DOI 10.1617/s11527-017-1018-6.
    Rowe, GM. and Bouldin, MG. 2000. “Improved techniques to evaluate the fatigue resistance of asphaltic mixtures.” In: 2nd Eurasphalt and Eurobitume Congress, Barcelona. Book 1-Session 1, pp 754–763.
    Shen, S. 2006. “Dissipated energy concepts for HMA performance: Fatigue and healing.” Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, Urbana, IL.
    Saleh, M. 2020. “Modified wheel tracker as a potential replacement for the current conventional wheel trackers.” International Journal of Pavement Engineering, Vol.21(1), https://doi.org/10.1080/10298436.2018.1435880.
    Van Dijk, W., Moreaud, H., Quedeville, A.,and Uge P. 1972. “In: 3rd international conference on the structural design of asphalt pavements.”, Grosvenor House, Park Lane, London, pp 254–366.

    QR CODE