簡易檢索 / 詳目顯示

研究生: 李德松
Der-Song Lee
論文名稱: 電子紙顯示器使用者的視距、螢幕角度、視覺績效與疲勞
Preferred Viewing Distance, Screen Angle, Visual Performance and Visual Fatigue of Electronic Paper Display Users
指導教授: 謝光進
Kong-King Shieh
口試委員: 李永輝
test
黃雪玲
test
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 125
中文關鍵詞: 電子紙、視距、螢幕角度、閃光融合閾值、能辨度、主觀視覺疲勞
外文關鍵詞: Electronic paper; Viewing distance; Screen angle
相關次數: 點閱:206下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以兩個實驗探討電子紙顯示器螢幕在各種顯示條件下對視覺作業的影響。
    實驗一在探討光源、照明度及字體高度,對電子紙顯示器之最適視距與最適視角的影響。實驗結果顯示,平均最適視距為49.4 cm,平均最適視角為123.4°。光源對最適視距影響不顯著,但對最適視角有顯著影響。D65日光燈和TL84螢光燈的最適視角差不多,但F鵭絲燈的最適視角較小。照明度和顯示媒介對最適視距和最適視角的影響顯著,照明度愈高,最適視距愈長,最適視角愈小。顯示媒介的平均最適視距與平均最適視角分別為:Kolin膽固醇液晶顯示器 (50.0 cm, 127.4°),Sony電子墨水顯示器(49.1 cm, 120.0°),普通紙張(49.0 cm, 122.9°)。字體高度對最適視距的影響顯著,但是對最適視角的影響不顯著。本研究結果顯示平均最適視距為49.4 cm,字體愈大,視距愈長,電子紙的視距與VDT螢幕之視距雷同,大約為50公分,有別於正常閱讀書本之距離36 cm。平均最適視角大約為123.4°,當電子紙顯示器的視距為50公分,眼睛離桌面的垂直距離平均為34 cm時,平均最適注視角度位於眼睛水平線下29.5°,符合一般視覺顯示器位於眼晴水平線下約20°至50°間。
    實驗二在探討光源、環境照明度及字體高度對電子紙顯示器之視覺績效與視覺疲勞的影響。實驗結果顯示,環境照明度對搜尋時間影響顯著,照明度愈高,搜尋時間愈快;字體高度對搜尋時間影響顯著,字體高度愈大,搜尋時間愈快。照明度與字體高度之間的交互作用效果顯著,搜尋時間都是1500 lx時最快,700 lx次之,300 lx最慢。但是三個照明度下的搜尋時間差異隨著字體高度的變小而逐漸加大。當字體高度為1.4 mm (視角為9.6 min)時,差異顯著變大。光源與環境照明度對辨識正確率的影響不顯著。字體高度對辨識正確率影響顯著,字體高度1.4 mm (84.1 %),其辨識正確率最低。2.2 mm (視角為15.1 min)、3.3 mm (視角為22.7 min)和4.3 mm (視角為29.6 min)這三種字體高度彼此之間在辨識正確率上無顯著差異。
    對於受試者的視覺疲勞,實驗結果顯示,光源和顯示媒介兩者均對CFF的變化影響不顯著。視覺疲勞的另一個指標-受試者的主觀視覺疲勞,它與光源類型顯著地無關,但是它與顯示媒介顯著地有關。光亮度對比在視覺疲勞上可能扮演一個重要的角色。


    Two experiments were conducted to electronic paper (E-Paper) displays under various working conditions in this study.
    The first experiment investigated the viewing distance and screen angle for electronic paper (E-Paper) displays under various light sources, ambient illuminations, and character sizes. Data analysis showed that the mean viewing distance and screen angle were 49.4 cm and 123.4°. The mean viewing distances for Kolin Chlorestic Liquid Crystal display was 50.0 cm, significantly longer than Sony electronic ink display, 49.1 cm. Screen angle for Kolin was 127.4°, significantly greater than that of Sony, 120.0°. Various light sources revealed no significant effect on viewing distances; nevertheless, they showed significant effect on screen angles. The screen angle for sunlight lamp (D65) was similar to that of fluorescent lamp (TL84), but greater than that of tungsten lamp (F). Ambient illumination and E-paper type had significant effects on viewing distance and screen angle. The higher the ambient illumination was, the longer the viewing distance and the lesser the screen angle. Character size had significant effect on viewing distances: the larger the character size, the longer the viewing distance. The results of this study indicated that the viewing distance for E-Paper was similar to that of visual display terminal (VDT) at around 50 cm, but greater than normal paper at about 36 cm. The mean screen angle was around 123.4°, which in terms of viewing angle is 29.5° below horizontal eye level. This result is similar to the general suggested viewing angle between 20° and 50° below the horizontal line of sight.
    The second experiment investigated effects of light source, ambient illumination and font height on visual performance and visual fatigue with electronic paper (E-Paper) displays. The results showed that ambient illumination significantly affected search time. The higher the ambient illumination was, the faster the search time. Font height had significant effects on search time. The greater the font height was, the faster the search time. The ambient illumination × font height interaction was statistically significant on search time. 1500 lx was the fastest of the three, 700 lx was the second, and 300 lx was the slowest. But the difference of search time under three illuminations was strengthened gradually as font height was diminished. When font height was 1.4 mm (viewing angle is 9.6 min), the difference became great apparently. Light source and ambient illumination had nonsignificant effects on correct percentage. Font size had significant effects on correct percentage. Font size 1.4 mm (84.1 %) was the lowest of all on correct percentage. 2.2 mm (viewing angle is 15.1 min) , 3.3 mm (viewing angle is 22.7 min) and 4.3 mm (viewing angle is 29.6 min) had nonsignificant effects on correct percentage.
    In terms of visual fatigue, results showed that both light source and display medium had no significant effects on the change of CFF (Critical Flicker Fusion). Subjective visual fatigue was not significantly related to light source, but significantly related to display medium. Luminance contrast may play an important role on visual fatigue.

    摘要 I 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 研究限制 7 1.4 研究架構 7 第二章 文獻探討 9 2.1 電子紙的技術興起背景 11 2.2 電子紙的發展與技術原理 14 2.2.1 蓋銳岡(Gyricon)系統原理 14 2.2.2 微膠囊電泳技術原理 15 2.2.3 反射式膽固醇液晶顯示器 17 2.2.4 電子紙的型式 19 2.3 電子墨水的主要效能優勢 21 2.3.1 像紙一般的可讀性 22 2.3.2 極低的電力損耗 26 2.3.3 極易於攜帶與輕薄 27 2.3.4 最佳的移動式顯示器解決方法 29 2.4 螢幕的可讀性與能辨度 30 2.5 視覺顯示器與視覺作業的人因議題 31 2.5.1 視覺顯示器種類 31 2.5.2 CRT與LCD的探討 32 2.5.3 CRT與LCD的研究比較 34 2.5.4 電子紙顯示器的研究 37 2.6 影響視覺績效與主觀偏好的因素 37 2.6.1 視角與字體大小 38 2.6.2 亮度對比的研究 39 2.6.3 環境照明對VDT工作之影響 41 2.7 視覺疲勞衡量指標之研究 43 2.7.1 視覺過程 43 2.7.2 視覺疲勞主觀評量 45 2.7.3 VDT視距與視覺疲勞 48 第三章 實驗1:電子紙顯示器的視距與視角 51 3.1 前言 51 3.2 研究方法 51 3.2.1 實驗設計 51 3.2.2 受試者 52 3.2.3 實驗器材 53 3.2.4 VDT 工作站 54 3.2.5 實驗程序 55 3.2.6 因變數量測與資料分析 57 3.3 結果 58 3.3.1 最適視距 58 3.3.2 最適視角 61 3.4 討論 64 3.4.1 最適視距 64 3.4.2 最適視角 67 3.5 小結 69 第四章 實驗2:光源、環境照明與字體高度對電子紙顯示器的能辨度與視覺疲勞的影響 71 4.1 前言 71 4.2 研究方法 71 4.2.1 實驗設計 71 4.2.2 受試者 72 4.2.3 實驗器材 73 4.2.4 VDT 工作站 74 4.2.5 實驗程序 75 4.2.6 因變數量測與資料分析 77 4.3 結果 79 4.3.1 搜尋時間 80 4.3.2 辨識正確率 82 4.3.3 閃光融合閾值的變化 87 4.3.4 主觀視覺疲勞 88 4.4 討論 89 4.4.1 搜尋時間 89 4.4.2 辨識正確率 91 4.4.3 閃光融合閾值的變化 93 4.4.4 主觀視覺疲勞 94 4.5 小結 94 第五章 結論與建議 96 5.1結論 96 5.1.1 顯示媒介 96 5.1.2 光源 96 5.1.3 環境照明 97 5.1.4 字體高度 97 5.1.5 視覺疲勞 97 5.2建議 98 參考文獻 99 中文文獻 99 英文文獻 99 附錄1 實驗一 電子紙顯示器的視距與視角 指示語 111 附錄2 實驗二 電子紙顯示器的視覺績效與視覺疲勞 指示語 112 附錄3 視覺疲勞主觀評量表 113 作者簡介 圖目錄 圖1.1 研究架構 8 圖2.1 Gyricon 系統原理 (資料來源:科學人雜誌) 15 圖2.2 微膠囊電泳技術原理 (資料來源:E Ink Corporation) 17 圖2.3 “可讀的”電子紙的概念 22 圖2.4 顯示器的電力損耗比較 (資料來源:E Ink Corporation) 27 圖2.5 傳統lcd和電子墨水顯示器之顯示單元結構的比較 29 (資料來源:E Ink Corporation,2002年) 29 圖2.6 視覺示意圖 (資料來源:美工圖書社,1995年) 45 圖3.1 電子書閱讀器:Sony LIBRI 和 Kolin i-library 54 圖3.2 實驗1 VDT 工作站的設置 55 圖3.3 視距與視角 57 圖3.4 環境照明×光源對最適視角之交互作用 62 圖3.5 字體高度顯示媒介對最適視角之交互作用 63 圖4.1 實驗2 VDT 工作站的設置 75 圖4.2 環境照明×字體高度對搜尋時間之交互作用 82 圖4.3 環境照明×光源對辨識正確率之交互作用 84 圖4.4 字體高度×光源對辨識正確率之交互作用 85 圖4.5 顯示媒介×字體高度對辨識正確率之交互作用 86 圖4.6 環境照明×字體高度對辨識正確率之交互作用 87 表目錄 表2.1 電子紙的型式 20 表2.2 電子紙的三項期望 21 表2.3 反射式顯示媒介的比較 25 表2.4 電子墨水與目前的顯示器技術的比較 25 表3.1 自變數各水準的平均視距、平均視角和標準差 58 表3.2最適視距變異數分析 59 表3.3 自變數處理平均數間之最適視距與最適視角LSD多重檢定 60 表3.4 最適視角變異數分析 61 表3.5 平均最適視角的轉換 68 表4.1 自變數各水準的搜尋時間與辨識正確率之平均數和標準差 79 表4.2 自變數各水準的CFF變化與視覺疲勞主觀評量平均數和標準差 80 表4.4 自變數處理平均數間之搜尋時間Duncan多重範圍檢定 81 表4.6 字體高度處理平均數間之搜尋時間Duncan多重範圍檢定 84 表4.7 閃光融合閾值的變化之變異數分析 88 表4.8 主觀視覺疲勞評量值之變異數分析 88 表4.9 顯示媒介處理平均數間之主觀視覺疲勞Duncan多重範圍檢定 89

    中文文獻
    沙益安和廖奇璋 (2005),膽固醇液晶螢幕輕薄又省電,關掉電源也能顯示,新電子科技雜誌, 網址:http://64.233.179.104/。
    美工圖書社編,色彩計劃手冊,1995年,台北,8-9。
    翁秉仁 譯 (2002),電子紙爭雄記,科學人,第5期。網址:http://www.sciam.com.tw/。
    陳連春 (1998),彩色液晶顯示器—原理與技術,台北,建興出版社。
    劉瑞祥 (1998),液晶之基礎與應用,台北,國立編譯館,2版。
    羅方禎 (1999),TFT的設計與生產,液晶電子研討會,台南,崑山技術學院。
    英文文獻
    Ahlström, G., Lowden, A., Malmkvist, H., Schenkman, B., Stöhr, R. and Weselka, R. (1992). Field study of a new type of computer screen technology. In: Luczak, H., Cakir, A. and Cakir, G. (Eds.), Work With Display Units 92, Selected Proceedings of the Third International Scientific Conference on Work with Display Units, Berlin, Germany.
    Andersen, T. (1986). LCD screens rival the CRT. Systems International, 14 (6), 60-61.
    Ankrum, D. R. (1996). Viewing Distance at Computer Workstations. Workplace Ergonomics, 2, 5, 10-13.
    Ankrum, D. R. and Nemeth, K. K. (1995). Posture, comfort, and monitor placement. Ergonomics in Design, 3, 7-9.
    ANSI/HFS 100-1988. (1988). American National Standard for Human Factors Engineering of Visual Display Terminal Workstations. Human Factors Society, Inc., Santa Monica, California.
    Aoki, K., Yamanoi, N., Aoki, M. and Horie, Y. (1984). A study on the change of visual function in CRT display task. In: Human-Computer Interaction, G. Salvendy, Ed. Elsevier, Amsterdam, Netherlands, 465-468.
    Bangor, Aaron W. (2005). Display Technology and Ambient Illumination Influences on Visual Fatigue at VDT Workstations. Retrieved July 28, from Virginia Polytechnic Institute and State University, digital library and archives, Web site: http://scholar.lib.vt.edu/theses
    Benz, C., Grob, R., and Haubner, P. (1983). Designing VDU workplaces. (German edition: Gestaltung von Bildschirm-Arbeitsplätzen). Köln: Verlag TÜV Rheinland.
    Bergqvist, U. O. and Knave, B. (1987). Visual Display Terminals and Workers' Health. World Health Organization Offset Publications, 99.
    Boschman, M. C. and Roufs, J. A. J. (1997). Text quality metrics for visual display units: I.Methodological aspects. Displays, 18 (18), 37-43.
    Boschman, M. C. and Roufs, J. A. J. (1997). Text quality metrics for visual display units: II. An experimental survey. Displays, 18 (18), 45-64.
    Bullimore, M. A., Fulton, E. J. and Howarth, P. A. (1990). Assessment of visual performance. In: Wilson, J. R. and Corelett, E. N. (Eds.), Evaluation of human work: A practical ergonomics methodology, Taylor and Francis, London.
    Burgess-Limerick, R., Mon-Willams M. and Coppard, V. L. (2000). Visual display height. Human Factors, 42 (1), 140-150.
    Burnacz, J. G. (1990). PC Monitors: pleasing to the Eye- And the Budget. Today ’s office, 25 (3), 24-25.
    Castelhano, M. S. and Muter, P. (2001). Optimizing the reading of electronic text using rapid serial visual presentation. Behaviour and Information Technology, 20, 237-247.
    Charles, A. and Tohn, K. (1985). Flat Panels: A New Fact for Terminals. Computerworld, 19 (4), 11-16.
    Chen, C. Y. and Zhong, T. D. (1999). An Ergonomic Development for VDT Workstation. Published by the Institute of ccupational Safety and Health Council of Labor Affairs, Executive Yuan, Republic of China, IOSH88-H326.
    Chen, H. C., Chan, K. T. and Tsoi, K. C. (1988). Reading self-paced moving text on a computer display. Human Factors, 30, 285-291.
    Chen, M. T. and Lin, C. C. (2004). Comparison of TFT-LCD and CRT on visual recognition and subjective preference. International Journal of Industrial Ergonomics, 34, 167-174.
    Chi, C. F. and Lin, F. T. (1998). A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks. Human Factors, 40 (4), 577-592.
    Codning, E. C. and Hacunda, J. S. (1991). Computer and Visual Screens. Abacus, MJ, U.S.A.
    Cole and Barry L (2003). Do video display units cause visual problems?—a bedside story about the processes of public health decision-making. Clin Exp Optom, 86: 4: 205-220.
    Collins, C. C., O'Meara, D. and Scott, A. B. (1975). Muscle tension during unrestrained human eye movements. Journal of Physiology, 240, 351-369.
    Dillon, A. (1992). Reading from paper versus screens: a critical review of the empirical literature. Ergonomics, 35, 1297-1326.
    DIN 66234. Characteristic values for the adaptation of workstations with fluorescent screens to humans, Parts 1 to 9. German DIN Association, 1981.
    Donohue, James F. (1986). Neatness, Low Power Drain Propel Flat-Panel Displays. Mini-Micro Systems, 19 (5), 41-46.
    E-ink Corporation, Cambridge, MA 02138, USA.
    E-Ink Corporation (2002). Electronic Ink Key Performance Benefits. Web site: http://www.eink.com/pdf/eink_key_benefits_02.pdf
    E-Ink Corporation (2002). Display Readability. Web site: http://www.eink.com/pdf/eink_readability_02.pdf
    E-Ink Corporation (2002), A Closer Look: Revolutionary Paper-Like Display Technology. Web site: http://www.eink.com
    Fisher, R. F. (1977). The force of contraction of human ciliary muscle during accommodation. Journal of Physiology, 270, 51-74.
    Gallimore, J. J. and Brown, M. E. (1993). Effectiveness of the C-Sharp: reducing ergonomics problems at VDTs. Applied Ergonomics, 24 (5), 327-336.
    Gould, J. D. and Grischkowsky, N. (1984). Doing the same work with hard copy and cathode ray tube (CRT) computer terminals. Human Factors, 26, 323-337.
    Goussard, Y., Martin, B. and Stark, L. (1987). A New Quantitative Indicator of Visual Fatigue. IEEE Transactions on Biomedical Engineering, 34 (1), 23-29.
    Grandjean, E., Hunting, W. and Piderman, M. (1983). VDT workstation design: Preferred settings and their effects. Human Factors, 25, 161-175.
    Grandjean, E. (1987). Ergonomics in computerized offices. London: Taylor & Francis.
    Gratton, I., Piccoli, B., Zaniboni, A., Meroni, M. and Grieco, A. (1990). Change in visual function and viewing distance during work with VDTs. Ergonomics, 33(12), 1433-1441.
    Gunnarsson, E. and Soderberg I. (1983). Eye strain resulting from VDT work at the Swedish Telecommunications Administration. Applied Ergonomics, 14, 61-69.
    Hansen, W. J. and Haas, C. (1988). Reading and writing with computers: a framework for explaining difference in performance. Communications of the ACM, 31, 1080-1089.
    Harwood, K. and Foley, P. (1987). Temporal resolution: an insight into the video display terminal (VDT) problem. Human Factor, 29, 447-452.
    Helander, M. G. and Rupp, B. A. (1984). An overview of standards and guidelines for visual display terminals. Applied Ergonomics, 15, 185-195.
    Heuer, H., Hollendiek, G., Kröger, H. and Römer, T. (1989). Die Ruhelage der Augen und ihr Einfluß auf Beobachtungsabatand und visuelle Ermüdung bei Bildschirmarbeit. Zeitschrift für experimentelle und angewandte psychologie, 36, 538-566.
    Horie, Y. (1987). A study of optimum term of working hours with rest intervals for VDT workers. Japanese Journal of Ergonomics, 23 (6), 373-383.
    Horikawa, M. (2001). Effect of visual display terminal height on the trapezius muscle hardness: quantitative evaluation by a newly developed muscle hardness meter. Applied Ergonomics, 32 (4), 473-478.
    Illuminating Engineering Society (1981). IES lighting handbook (Application vol.). New York.
    ISO (1992). ISO 9241-3, Ergonomic requirements for office work with visual display terminals (VDTs) Part 3: Visual display requirements.
    ISO (1998). ISO 9241-5. Ergonomic requirements for office work with visual display terminals (VDTs) Part 5: Workstation layout and postural requirements.
    Isono, H., Takahashi, S., Takiguchi, Y. and Yamada, C. (2004). Measurement of visual fatigue from reading on electronic paper. IDW'04, 1647-1648.
    Jaschinski-Kruza, W. (1988). Visual strain during VDU work: The effect of viewing distance and dark focus. Ergonomics, 31(10), 1449-1465.
    Jaschinshi-Kruza, W. (1990). On the preferred viewing distances to screen and document at VDU workplaces. Ergonomics 33, 1055-1063.
    Jaschinski-Kruza, W. (1991). Eyestrain in VDU users: viewing distance and the resting position of ocular muscles. Human Factors 33, 69-83.
    Jaschinski, W., Heuer, H. and Kylian, H. (1998). Preference position of visual displays relative to the eyes: a field study of visual strain and individual differences. Ergonomics, 41 (7), 1034-1049.
    Jashinski, W., Heuer, H. and Kylian, H. (1999). A procedure to determine the position of visual display relative to the eyes. Ergonomics, 42 (4), 535-549.
    Jeng, S. C., Lin, Y. R., Liao, C. C., Wen, C. H., Chao, C. Y. and Shieh, K. K. (2005). Legibility of Electronic Paper. The 5th International Meeting on Information Display, July 19~23, COEX SEOUL, KOREA.
    Jeng, S. C., Lin, Y. R., Liao, C. C., Wen, C. H., Wei, C. S. and Zan, H. W. (2004). Human factors guidelines for paper-like displays. IDW'04, 1529-1530.
    Jeng, S. C. et al. (2005). Lightness and Contrast Requirements for Paper like Displays IDMC'05, 787-789.
    Kavoossi, Babak (2001). Printed micro systems on paper active imaging and visual information on paper and paper-based products. Helsinki University of Technology, Laboratory of Media Technology, from Web site: http://www.tekes.fi/julkaisut/Active_imaging.pdf
    Klein, A. (2000). E Ink writes its future on e-paper. The Wall Street Journal.
    Kolin i-library. 2005, Web site: http://i-library.kolin.com.tw
    Kroemer, K. H. E. and Hill, S. G. (1986). Preferred Line of Sight Angle. Ergonomics, 29, 1129-1134.
    Laubli, Th., Hunting, W. and Grandjean, E. (1982). Visual impairments in VDU operators related to environmental conditions. In: Grandjean, E., Vigliani, E. (Eds.), Ergonomics Aspects of Visual Display Terminals. Taylor & Francis, London.
    Legge, G. E., Pelli, D. G., Rubin, G. S., and Schleske, M. M. (1985). Psychophysics of reading-I. Normal vision. Vision Research, 25, 239-252.
    Lessin, J. (1992). TFT acting up a storm onscreen. Computer Technology Review, 12 (4), 6-30.
    Lunn, R. and Banks, W. P. (1986). Visual Fatigue and Spatial Frequency Adaptation to Video Displays of Text. Human Factors, 28 (4), 457-464.
    MacKenzie, I. S. and Riddersma, S. (1994). Effects of output display and control-display gain on human performance in interactive systems. Behaviour and Information Technology, 13, 328-337.
    Marek, T. and Noworol, C. (1987). Bi-point flicker research and self-ratings of mental and visual fatigue of VDT operators. In: Asfour, S. S. (Ed.), Trends in Ergonomics / Human Factors IV, Elsevier, North-Holland, 163-168.
    Megaw, T. (1990). The definition and measurement of visual fatigue. In: Wilson, J. R. and Corlett, E. N. (Eds.), Evaluation of human work, Taylor & Francis, London, 682-702.
    Menozzi, M., Napflin, U. and Krueger, H. (1999). CRT versus LCD: A pilot study on visual performance and suitability of two display technologies for use in office work. Displays, 20 (1), 3-10.
    Mills, C. B. and Weldon, L. J. (1987). Reading text from computer screens. ACM Computing Surveys, 19, 329-358.
    Misawa, T., Yoshida, K. and Shigeta, S. (1984). An experimental study of the duration of a single spell of work on VDT performance. Japanese Journal of Industrial Health, 26 (4), 269-302.
    Mon-Williams, M., Plooy, A., Burgess-Limerick, R. and Wann, J. (1998). Gaze angle: A Possible Mechanism of Visual Stress in Virtual Reality Headsets. Ergonomics, 41, 280-285.
    Mon-Willams, M., Burgess-Limerick, R., Plooy, A. and Wann, J. (1999). Vertical gaze direction and postural adjustment: an extension of the Heuer model. Journal of Experimental Psychology: Applied, 5, 35-53.
    Mourant, R. R., Lakshmanan, R. and Chantadisai, R. (1981). Visual fatigue and cathode ray tube display terminals. Human Factors, 23 (5), 529-540.
    National Research Council (1983). Video Display, Work and Vision. National Academy Press, Washington, DC.
    Nishiyama, K. (1990). Ergonomic aspect of the health and safety of VDT work in Japan: a review. Ergonomics, 33, 659-685.
    Omodani, M. (1999). Concept of Digital Paper and its Technology Trend, Journal of the Image Society of Japan, 38 (2), 115-121.
    Omodani, M. (2004). What is Electronic Paper? The Expectations. SID’04 Digest, 128-131.
    Ostberg, O. (1980). Accommodation and visual fatigue in display word. In: Grandjean, E. and Vigliani, E. (Eds.), Ergonomic aspects of visual display terminals, Taylor and Francis, London. 41-52.
    Pastoor, S. (1990). Legibility and subjective preference for color combinations in text. Human Factor, 32 (2), 157-171.
    Post, D. L. and Reinhart, W. F. (1997). Image quality of two-primary color active-matrix liquid-crystal displays. Human Factors, 39 (4), 618-641.
    Rahman, T. & Muter, P. (1999). Design an interface to optimize reading with small display windows. Human Factors, 41, 106-117.
    Saito, S., Taptagaporn, S. and Salvendy, G. (1993a). Visual comfort in using different VDT screens. International Journal of Human-Computer Interaction, 5 (4), 313-323.
    Saito, S., Sotoyama, M., Taptagaporn, S., Suzuki, T. and Saito S. (1993b). Characteristics of vertical eye movements in the workstation used Flat Panel Display (FPD). In: M. J. Smith and G. Salvendy (Eds.), Human-Computer Interaction: Applications and Case Studies, Elsevier, Amsterdsm, 756-761.
    Sanders, M. S. and McCormick E. J. (1992). Human Factors in Engineering and Design. McGraw-Hill, Singapore.
    Satoru, K. (1997). Ergonomic comparison of liquid crystal display and cathode ray tube display. Display and Imaging, 5 (3), 181-190.
    Shieh, K. K. and Chen, M. T. (1997). Effects of screen color combination, work-break schedule, and workplace on VDT viewing angle. International Journal of Industrial Ergonomics, 20, 11-18.
    Shieh, K. K. (2000). Effects of reflection and polarity on LCD viewing distance. International Journal of Industrial Ergonomics, 25, 275-282.
    Shieh, K. K. and Lin, C. C. (2000). Effects of screen type, ambient illumination, and color combination on VDT visual performance and subjective preference, International Journal of Industrial Ergonomics, 26, 527-536.
    Shurtleff, D. (1967). Studies in television legibility: A review of the literature. Information Display, 4, 40-45.
    Sinclair, M. A. (1990). Subjective assessment. In: Wilson, J. R. and Corlett, E. N. (Eds.), Evaluation of human work, Taylor & Francis, London, 58-88.
    Smith, M. J., Cohen B. G. F. and Stammerjohn, L. W. (1981). An investigation of health complaints and job stress in video display operators. Human Factors, 23 (4), 387-400.
    Snyder, H. L. and Maddox, M. E. (1978). Information transfer from computer-generated dotmatrix displays (Report No HFL-78-3). Blacksburg, VA: Virginia Polytechnic Institute and State University, Department of IEOR.
    Snyder, H. and Taylor, G. (1979). The sensitivity of response measures of alphanumeric legibility to variations in dot matrix display parameters. Human Factors, 21, 457-471。
    Sommerich, C. M., Joines, S. M. B. and Psihogios, J. P. (2001). Effects of computer monitor viewing angle and related factors on strain performance, and preference outcomes. Human Factors, 43 (1), 39-55.
    Sony LIBRIé. 2005,
    Web site: http://www.sony.jp/products/Consumer/LIBRIE/
    Stammerjohn, L. W., Smith, M. J. and Cohen, B. G. F. (1981). Evaluation of work station design factors in VDT operations. Human Factors 23, 401-412.
    Swedish ISO Proposal. Requirements in visual information processing-Image quality of cathode ray tube (CRT) based visual display units for text presentation in office environments. Stockholm: Standardiserings-kommissionen, 1982.
    Turville, K. L., Psihogios, J. P., Uimer, T. R. and Mirka, G. A. (1998). The effects of video display terminal height on the operator: a comparison of the 15° and 40° recommendations. Applied Ergonomics, 29 (4), 239-246.
    Warner, T. (1993). LCD panels: Crystallizing screen displays. Macworld, 10 (1), 107-108.
    Weber, A., Jermini, C. and Grandjean, E. P. (1975). Relationship between objective and subjective assessment of experimentally induced fatigue. Ergonomics, 18, 151-156.
    Weston, H. C. (1949). Sight, light, and efficiency. Lewis, London.
    Wilkinson, R. T. and Robinshaw, H. M. (1987). Proof reading: VDU and paper text compared for speed, accuracy and fatigue, Behaviour and Information Technology, 6 (2), 125-133.
    Xu, W. and Zhu, Z. (1990). The effects of ambient illumination and target luminance on colour coding in a CRT display. Ergonomics, 33, 933-944.
    Yoshitake, H. (1975). Relation between the symptoms and the feelings of fatigue. In: Hashimoto, K., Kogi, K. and Grandjean, E. (Eds.), Methodology in Human Fatigue Assessment, Taylor & Francis, London, 175-186.
    Zhu, Z. and Wu, J. (1990). On the standardization of VDT's proper and optimal contrast range. Ergonomics, 33, 925-932.

    QR CODE