簡易檢索 / 詳目顯示

研究生: 彭裕傑
Yu-Jie Peng
論文名稱: 階段濺鍍之氧化矽薄膜研究
SiO2 thin films deposited by the step sputtering technique
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 趙振綱
黃育熙
張瑞慶
林宗鴻
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 64
中文關鍵詞: 氧化矽薄膜射頻磁控濺鍍附著力光穿透率水氣穿透率
外文關鍵詞: silicon oxide film, RF magnetron sputtering, adhesion, light transmittance, WVTR
相關次數: 點閱:278下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將利用射頻磁控濺鍍機(RF magnetron sputter)濺鍍氧化矽薄膜於可撓性基材PET上,利用單階段濺鍍技術與雙階段濺鍍技術,並改變濺鍍功率,探討其對氧化矽薄膜之表面粗糙度、表面型態、附著力、光穿透率及水氣穿透率之影響。單階段濺鍍分別以30W、40W、50W之功率製作100 nm膜厚之SiO2薄膜; 雙階段濺鍍則分別先以30W功率沉積50 nm SiO2薄膜於PET上,再以50W功率沉積50 nm SiO2薄膜於上層。另一組則是以先以50W功率沉積50 nm SiO2薄膜於PET上,再以30W功率沉積50 nm SiO2薄膜於上層。
    由實驗結果顯示,較高功率(50W)下所濺鍍之SiO2薄膜,其表面粗糙度較高,且薄膜內的缺陷也較明顯,晶體與晶體間的裂縫較深、較長,造成水氣穿透率的提升。另外高功率下所鍍製的薄膜因有較大表面能,能有較好的附著力。而利用雙階段濺鍍所鍍製的SiO2薄膜,其中30W SiO2 / 50W SiO2 / PET,以高功率鍍製的薄膜作為與PET的接觸層,能增加整體薄膜的附著力;以低功率鍍製的薄膜作為最上層的表面層,能降低薄膜表面粗糙度以及提升薄膜的表面型態,且整體水氣穿透率可降低至2.358 g / m2.day,相對於PET的5.924 g / m2.day有明顯的改善,且其平均光穿透率可達85%以上。


    In this paper, 100 nm silicon oxide thin films have been deposited on the flexible polyethylene terephthalate (PET) substrate by RF magnetron sputtering, using single-step and two-step sputtering technique. The influence of the surface roughness, surface pattern, adhesion, light transmittance and water vapor permeability of the silicon oxide film under different sputtering power are investigated.
    Single-step sputtering uses 30W, 40W, 50W sputtering powers to produce 100 nm SiO2 films, respectively; Two-step sputtering, first group, deposits 50 nm SiO2 films with 30W sputtering power on the PET, and then deposits 50 nm SiO2 films with 50W sputtering power in the upper layer. The other group first deposits 50 nm SiO2 films with 50W sputtering power on the PET, and then deposits 50 nm SiO2 films with 30W sputtering power in the upper surface.
    The results show that the surface roughness of the silicon dioxide films sputtered at high-power (50W) is higher, and the defects in the films are more obvious. The cracks in the films are deeper and longer, resulting in enhanced water vapor permeability. In addition, the high-power coated films due to the larger surface energy, can have better adhesion. And the use of two-stage sputtering of the SiO2 films, especially 30W SiO2 / 50W SiO2 / PET, with high-power coated films as PET contact layer, can increase the overall films adhesion; low-power coated films on the top layer as the surface layer can reduce the surface roughness and enhance the surface morphology, and the overall water vapor permeability can be reduced to 2.358 g / m2.day, compared to PET 5.924 g / m2.day obvious improved, and its average light penetration rate is up to 85%.

    中文摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機與目的 1.2 文獻回顧 1.2.1 氧化矽之基本特性 1.2.2 製程參數對薄膜影響 1.3 本文作法 第二章 研究方法與基礎理論 2.1 濺鍍技術 2.1.1射頻濺鍍 2.1.2反應性濺鍍 2.1.3薄膜成核及成長 2.2 表面輪廓儀 2.2.1表面輪廓儀架構及原理 2.2.2表面輪廓儀探針特性 2.2.3 表面輪廓儀量測時注意事項 2.2.4 表面輪廓儀實驗步驟 2.3 場發射電子顯微鏡 2.3.1 場發射掃描式電子顯微鏡架構 2.3.2 場發射掃描式電子顯微鏡規格 2.3.3 場發射掃描式電子顯微鏡實驗步驟 2.4 光譜儀 2.4.1 光穿透率架構與原理 2.4.2 光穿透率量測時注意事項 2.4.3 穿透率實驗步驟 2.5 微米刮痕儀 2.5.1 微米刮痕儀架構及原理 2.5.2 微米刮痕儀注意事項 2.5.3 微米刮痕儀實驗步驟 2.6 光學顯微鏡 2.6.1光學顯微鏡注意事項與步驟 2.7 水氣穿透率 2.7.1 氣體穿透原理 2.7.2 水氣穿透率實驗步驟 第三章 實驗步驟 3.1 基材選用 3.2 實驗材料 3.3 前處理 3.4 薄膜濺鍍參數 第四章 結果與討論 4.1 薄膜之膜厚量測 4.1.1薄膜之成長速率 4.1.2 膜厚量測分析 4.2 薄膜表面型態分析 4.2.1 氧化矽薄膜表面粗糙度 4.2.2 氧化矽薄膜之表面形態 4.3 臨界附著力分析 4.3.1 氧化矽薄膜刮痕距離檢測 4.3.2 氧化矽薄膜臨界附著力與刮痕距離 4.4透光率量測 4.5水氣穿透率 第五章 結論與未來展望 參考文獻

    [1] T. Y. Lin and C. T. Lee, "Organosilicon function of gas barrier films purely deposited by inductively coupled plasma chemical vapor deposition system," (in English), Journal of Alloys and Compounds, vol. 542, pp. 11-16, Nov 25 2012.
    [2] Y. C. Han, C. Jang, K. J. Kim, K. C. Choi, K. Jung, and B. S. Bae, "The encapsulation of an organic light-emitting diode using organic-inorganic hybrid materials and MgO," (in English), Organic Electronics, vol. 12, no. 4, pp. 609-613, Apr 2011.
    [3] E. Kim, Y. Han, W. Kim, K. C. Choi, H. G. Im, and B. S. Bae, "Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials," (in English), Organic Electronics, vol. 14, no. 7, pp. 1737-1743, Jul 2013.
    [4] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. Mccarty, and M. E. Thompson, "Reliability and Degradation of Organic Light-Emitting Devices," (in English), Applied Physics Letters, vol. 65, no. 23, pp. 2922-2924, Dec 5 1994.
    [5] J. Fahlteich, M. Fahland, W. Schonberger, and N. Schiller, "Permeation barrier properties of thin oxide films on flexible polymer substrates," (in English), Thin Solid Films, vol. 517, no. 10, pp. 3075-3080, Mar 31 2009.
    [6] D. Wuu, W. Lo, L. Chang, and R. Horng, "Properties of SiO 2-like barrier layers on polyethersulfone substrates by low-temperature plasma-enhanced chemical vapor deposition," Thin Solid Films, vol. 468, no. 1, pp. 105-108, 2004.
    [7] S. Majee et al., "The effect of argon plasma treatment on the permeation barrier properties of silicon nitride layers," Surface and Coatings Technology, vol. 235, pp. 361-366, 2013.
    [8] K. M. Kim, B. J. Jang, W. S. Cho, and S. H. Ju, "The property of encapsulation using thin film multi layer for application to organic light emitting device," Current Applied Physics, vol. 5, no. 1, pp. 64-66, 2005.
    [9] 蔡勝達, "阻氣層SiO2對可撓性OLED壽命影響之研究," 中國機械工程學會第二十八屆全國學術演討會論文集, 2011.
    [10] S. F. Lim, W. Wang, and S. J. Chua, "Degradation of organic light-emitting devices due to formation and growth of dark spots," Materials Science and Engineering: B, vol. 85, no. 2, pp. 154-159, 2001.
    [11] 吳慧玲, "以電漿輔助化學氣相沈積法製備氧化矽氣體阻障層之研究," 碩士, 化學工程學系, 私立中原大學, 2006.
    [12] C. Charton, N. Schiller, M. Fahland, A. Holländer, A. Wedel, and K. Noller, "Development of high barrier films on flexible polymer substrates," Thin Solid Films, vol. 502, no. 1, pp. 99-103, 2006.
    [13] C.-C. Yu, M.-Y. Tsai, and C.-N. Hsiao, "Conductive Gas Barriers Prepared by Using Atomic Layer Deposition Technique," Procedia Engineering, vol. 36, pp. 562-570, 2012.
    [14] T. Hirvikorpi, M. Vähä-Nissi, A. Harlin, J. Marles, V. Miikkulainen, and M. Karppinen, "Effect of corona pre-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard," Applied Surface Science, vol. 257, no. 3, pp. 736-740, 2010.
    [15] H. Bartzsch, D. Glöß, B. Böcher, P. Frach, and K. Goedicke, "Properties of SiO 2 and Al 2 O 3 films for electrical insulation applications deposited by reactive pulse magnetron sputtering," Surface and Coatings Technology, vol. 174, pp. 774-778, 2003.
    [16] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, "Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating," Journal of Non-Crystalline Solids, vol. 216, pp. 77-82, 1997.
    [17] A. L. Brody, "Glass-coated flexible films for packaging: an overview," Package Technol, p. 44, 1994.
    [18] M. G. M. A. Yializis, R.E. Ellwanger, "Proceedings of the 43rd Annual Technical Conference, Society of Vacuum Coaters, Denver, U.S.A.," Apr 15–20 2000.
    [19] B. Henry et al., "A microstructural study of transparent metal oxide gas barrier films," Thin Solid Films, vol. 355, pp. 500-505, 1999.
    [20] A. Jankowski, J. Hayes, T. Felter, C. Evans, and A. Nelson, "Sputter deposition of silicon–oxide coatings," Thin solid films, vol. 420, pp. 43-46, 2002.
    [21] Y. Leterrier, L. Boogh, J. Andersons, and J. A. Månson, "Adhesion of silicon oxide layers on poly (ethylene terephthalate). I: Effect of substrate properties on coating's fragmentation process," Journal of Polymer Science Part B: Polymer Physics, vol. 35, no. 9, pp. 1449-1461, 1997.
    [22] K. Teshima, Y. Inoue, H. Sugimura, and O. Takai, "Gas barrier properties of silicon oxide films prepared by plasma-enhanced CVD using tetramethoxysilane," Vacuum, vol. 66, no. 3, pp. 353-357, 2002.
    [23] K. Tadanaga, K. Iwashita, T. Minami, and N. Tohge, "Coating and water permeation properties of SiO2 thin films prepared by the sol-gel method on nylon-6 substrates," Journal of sol-gel science and technology, vol. 6, no. 1, pp. 107-111, 1996.
    [24] A. W. S. F. Casey, G. Ellis, "Proceedings of the 42nd Annual Technical Conference, Society of Vacuum Coaters, Chicago, U.S.A.," Apr 17–22 1999.
    [25] K. I. S. Yokoyama, T. Ohya, S. Konmeda, Y. Yamada, H. Ishihara, "Proceedings of the 42nd Annual Technical Conference, Society of Vacuum Coaters, Chicago, U.S.A.," Apr 17–22 1999.
    [26] S. Kaya, E. Yilmaz, H. Karacali, A. Cetinkaya, and A. Aktag, "Samarium oxide thin films deposited by reactive sputtering: effects of sputtering power and substrate temperature on microstructure, morphology and electrical properties," Materials Science in Semiconductor Processing, vol. 33, pp. 42-48, 2015.
    [27] S.-H. Bang, N.-M. Hwang, and H.-L. Kim, "Permeation barrier properties of silicon oxide films deposited on polyethylene terephthalate (PET) substrate using roll-to-roll reactive magnetron sputtering system," Microelectronic Engineering, vol. 166, pp. 39-44, 2016.
    [28] M.-C. Lin, C.-H. Tseng, L.-S. Chang, and D.-S. Wuu, "Characterization of the silicon oxide thin films deposited on polyethylene terephthalate substrates by radio frequency reactive magnetron sputtering," Thin solid films, vol. 515, no. 11, pp. 4596-4602, 2007.
    [29] T. Takahashi, T. Harada, H. Murotani, and S. Matumoto, "Depositing highly adhesive optical thin films on acrylic substrates," Applied optics, vol. 53, no. 4, pp. A287-A290, 2014.
    [30] 林素霞, "氧化鋅薄膜的特性改良及應用之研究," 博士, 材料科學及工程學系, 國立成功大學, 2003.
    [31] 田民波, "薄膜技術與薄膜材料," 五南圖書出版, pp. 263-264, 2007.
    [32] 林光隆, "材料表面工程講義," 國立成功大學材料科學及工程學系, 2001.
    [33] J. L. V. a. W. Kerm, "Thin Film Process," in Academic Proces, pp. 134, 1999.
    [34] R. Cueff et al., "Characterization and adhesion study of thin alumina coatings sputtered on PET," Thin Solid Films, vol. 270, no. 1-2, pp. 230-236, 1995.
    [35] R. Cueff, G. Baud, M. Benmalek, J. Besse, J. Butruille, and M. Jacquet, "X-ray photoelectron spectroscopy studies of plasma-modified PET surface and alumina/PET interface," Applied surface science, vol. 115, no. 3, pp. 292-298, 1997.
    [36] X.-W. Gan, T. Wang, H. Wu, and C. Liu, "ZnO deposited on Si (111) with Al 2 O 3 buffer layer by atomic layer deposition," Vacuum, vol. 107, pp. 120-123, 2014.
    [37] 經濟部標準檢驗局, "中國國家標準防濕包裝材料之透溼度試驗法(杯皿法)," 標準總號:7093,標準類號:z600036. .
    [38] R. Flitsch and D. Y. Shih, "A study of modified polyimide surfaces as related to adhesion," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 8, no. 3, pp. 2376-2381, 1990.

    QR CODE