簡易檢索 / 詳目顯示

研究生: 林俐彤
Li-Tong Lin
論文名稱: 3D列印光固化樹脂拉拔力的探討
Discussion on adhesive force of photo-curable resin for 3D printing
指導教授: 何明樺
Ming-Hua Ho
口試委員: 陳崇賢
Chorng-Shyan Chern
鄭正元
Jeng-Ywan Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 124
中文關鍵詞: 拉拔力
外文關鍵詞: Adhesive force
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,使用下照式的DLP(digital light processing)光聚合技術,分析了樹脂性質對固化物件與樹脂槽底部拉拔力的影響。固化樹脂與由Teflon或PDMS組成的底材之間的拉拔力嚴重限制了3D列印中的列印速度。本研究對樹脂的轉化率、力學性能、表面能和收縮率進行了研究。為了控制這些特性,應用了三種線性和非線性光反應性寡聚體PC、PPG和PCL,以及反應性稀釋單體IBOA、CTFA、2-HEA、HDDA和TMPTA。
    結果顯示,寡聚體和單體對拉拔力的影響不同。對於寡聚體來說,拉拔力隨著伸長率和接觸角的增加而增加,而楊式係數、抗拉強度和收縮率增加會導致拉拔力下降。對於單體來說,拉拔力隨著伸長率和接觸角的增加而增加,但隨著楊式係數、抗拉強度和收縮率的增加而降低。使用最小平方法評估所有參數的重要性以及每兩個參數之間的相互作用。從結果來看,通過改變寡聚體的伸長率與接觸角的相互作用會最有效地增加拉拔力。而單體的楊式係數與收縮率的相互作用會最有效地降低拉拔力。最後從寡聚體和單體的比較來看,寡聚體的伸長率與接觸角的相互作用對拉拔力的影響最大。
    上述的機制可以通過固化樹脂和樹脂槽底材之間相互作用的能量平衡來解釋,高相互作用將增加分離所需的能量,這是通過寡聚體之間的低分子間作用力力導致的。固化單體的高楊式係數降低了分離的變形週期,也降低了分離能。
    最後一部分研究了塑化劑和固化時間的影響,將不同的塑化劑DBP、DOP和TCP添加到光固化樹脂中。結果顯示,塑化劑降低了黏度,從而提高了轉化率,高轉化率降低了拉拔力。相反的,塑化劑使固化樹脂變得更柔軟,從而增加了拉拔力。整體而言,塑化劑對拉拔力的影響不明顯。
    在這項研究中,討論了光固化樹脂中寡聚體、單體和添加劑的影響。結果顯示,降低寡聚體的伸長率、增加單體的楊式係數和添加塑化劑將有效的降低光聚合3D列印中的拉拔力。


    In this study, the bottom-up DLP (digital light processing) photopolymerization technology is used, followed by analyzing the effects of resin properties on the adhesive force between cured product and the bottom of resin tank. The adhesive force between cured resin and bottom layer composed of Teflon or PDMS membrane seriously limits the printing speed in the 3D printing. The conversion rate, mechanical properties, surface energy and shrinkage of resin were studied in this research. To control these properties, three linear and nonlinear photoreactive oligomers, PC, PPG, and PCL, and reactive diluent monomers, IBOA, CTFA, 2-HEA, HDDA and TMPTA, were applied.
    The results indicate that the effects of oligomers and monomers were different. For oligomers, the adhesive force increased with elongation and contact angle. On the other hand, Young’s modulus, tensile strength and shrinkage resulted in a decrease in adhesive force. For monomers, the adhesive force increased with elongation and contact angle, but decreased with Young’s modulus, tensile strength and shrinkage. The least squares method was used to evaluate the importance of all parameters and interactions between every two parameters. The result shows that by varying oligomers, the elongation/contact angle interaction of oligomers would increase adhesive force most efficiently, and Young’s modulus/shrinkage interaction of monomers would decrease adhesive force most efficiently. From the comparisons between oligomers and monomers, the elongation/contact angle interaction of oligomers played the most important role in the adhesive force.
    The above mechanisms would be explained by the energy balance on interforces between cured resin and tank bottom. The high interforce increased the required energy for separation, which was achieved by the low intermolecular force between oligomers. The high Young’s modulus of cured monomers decreased the deformation period in separation, which decreased the separation energy, too.
    In the last part, the effects of plasticizers and curing time were investigated. Different plasticizers, DBP, DOP and TCP were added to the photocurable resin. The results show that the plasticizers reduced the viscosity, and thus enhanced the conversion. High conversion decreased the adhesive force. On the contrary, the plasticizers made the cured resin softer, which increased the adhesive force. Overall, the plasticizers would not influence the adhesive force seriously.
    In this study, the effects of oligomers, monomers and additives in photoresin were discussed. The results suggest that the decrease of oligomers’ elongation, the increase of monomers’ Young’s modulus and the addition of plasticizers would effectively reduce the adhesive force in photopolymerization 3D printing.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 方程式目錄 XV 專有名詞縮寫 XVI 第一章 緒論 1 第二章 文獻回顧 2 2.1 積層製造技術 2 2.1.1 積層製造的發展 2 2.1.2 積層製造技術的種類 5 2.2 光聚合成型介紹 7 2.2.1 光聚合技術的發展及優勢 7 2.2.2 光聚合成型的種類 8 2.2.3 光固化系統自由基聚合原理 12 2.3 光固化樹脂的主要成分 13 2.3.1 寡聚體 13 2.3.2 單體 14 2.3.3 光起始劑 15 2.3.4 添加劑 16 2.4 影響光聚合速率之因素 17 2.4.1 光起始劑濃度 17 2.4.2 溫度 17 2.4.3 氧氣 18 2.5 影響列印時拉拔力之因素 18 2.5.1 曝光時間 18 2.5.2 列印圖像面積 19 2.5.3 成型平台抬升速度 19 2.6 改善列印拉拔力之相關研究 20 2.6.1 氟化物薄膜結合低固化度的陽離子/自由基混和樹脂 20 2.6.2 Bioinspired ultra-low adhesive energy interface 21 2.6.3 Oxygen-controlled inhibition technique 23 第三章 實驗材料與方法 25 3.1 實驗藥品 25 3.2 實驗儀器 26 3.3 實驗步驟 27 3.3.1 寡聚體的合成 27 3.3.2 光固化樹脂配方及混和方式 27 3.4 光固化材料性質檢測 28 3.4.1 傅立葉轉換紅外線光譜儀(ATR-FTIR)分析 28 3.4.2 拉伸試驗 29 3.4.3 光學式接觸角(Contact angle)量測分析 31 3.4.4 多功能固體密度測量儀 32 3.4.5 黏度測試 33 3.4.6 壓縮測試 33 3.4.7 紫外光/可見光光譜儀 34 3.5 光固化材料列印研究之機台控制 35 3.5.1 DLP型3D列印機台之控制介面 35 3.5.2 切層圖檔建立軟體 38 3.5.3 3D圖檔切層軟體 39 3.5.4 荷重元(load cell) 40 第四章 結果與討論 42 4.1 不同寡聚體對拉拔力的分析 42 4.1.1 拉拔力曲線圖分析 42 4.1.2 不同寡聚體對機械性質與拉拔力的影響 48 4.1.3 不同寡聚體對接觸角與拉拔力的影響 52 4.1.4 不同寡聚體對收縮率與拉拔力的影響 54 4.1.5 建立線性模式 57 4.2 不同單體對拉拔力的分析 59 4.2.1 拉拔力曲線圖分析 59 4.2.2 不同單體對機械性質與拉拔力的影響 65 4.2.3 不同單體對接觸角與拉拔力的影響 69 4.2.4 不同單體對收縮率與拉拔力的影響 73 4.2.5 建立線性模式 75 4.3 固化時間對拉拔力的影響 77 4.3.1 每層固化5秒下對拉拔力的影響 77 4.3.2 每層固化25秒下對拉拔力的影響 83 4.4 光固化樹脂加入塑化劑的分析 89 4.4.1 光固化樹脂加入塑化劑對機械性質的影響 89 4.4.2 光固化樹脂加入塑化劑對拉拔力的影響 91 第五章 結論 96 參考文獻 97

    [1] L. Chen, Y. He, Y. Yang, S. Niu, and H. Ren, "The research status and development trend of additive manufacturing technology," The International Journal of Advanced Manufacturing Technology, 2017;89, 3651-3660.
    [2] D. A. Arcos-Novillo and D. Güemes-Castorena, "Development of an additive manufacturing technology scenario for opportunity identification—The case of Mexico," Futures, 2017;90, 1-15.
    [3] M. Attaran, "The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing," Business Horizons, 2017;60, 677-688.
    [4] F. P. Melchels, M. A. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher, "Additive manufacturing of tissues and organs," Progress in Polymer Science, 2012;37, 1079-1104.
    [5] S. M. Peltola, F. P. Melchels, D. W. Grijpma, and M. Kellomäki, "A review of rapid prototyping techniques for tissue engineering purposes," Annals of Medicine, 2008;40, 268-280.
    [6] M. A. Woodruff and D. W. Hutmacher, "The return of a forgotten polymer—Polycaprolactone in the 21st century," Progress in Polymer Science, 2010;35, 1217-1256.
    [7] S. J. Hollister, "Porous scaffold design for tissue engineering," Nature Materials, 2005;4, 518-524.
    [8] J. J. Ballyns and L. J. Bonassar, "Image‐guided tissue engineering," Journal of Cellular and Molecular Medicine, 2009;13, 1428-1436.
    [9] J. T. Melton, A. J. Wilson, P. Chapman-Sheath, and A. J. Cossey, "TruFit CB® bone plug: chondral repair, scaffold design, surgical technique and early experiences," Expert Review of Medical Devices, 2010;7, 333-341.
    [10] O. Gülcan, K. Günaydın, and A. Tamer, "The State of the Art of Material Jetting—A Critical Review," Polymers, 2021;13, 2829-2848.
    [11] F. Probst, D. Hutmacher, D. Müller, H. Machens, and J. Schantz, "Calvarial reconstruction by customized bioactive implant," Handchirurgie, Mikrochirurgie, Plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse: Organ der V, 2010;42, 369-373.
    [12] C. W. J. Lim, K. Q. Le, Q. Lu, and C. H. Wong, "An overview of 3-D printing in manufacturing, aerospace, and automotive industries," IEEE Potentials, 2016; 35, 18-22.
    [13] J. Pegna, "Exploratory investigation of solid freeform construction," Automation in Construction, 1997;5, 427-437.
    [14] B. Khoshnevis, D. Hwang, K. T. Yao, and Z. Yeh, "Mega-scale fabrication by contour crafting," International Journal of Industrial and Systems Engineering, 2006;1, 301-320.
    [15] S. Lim, T. Le, J. Webster, R. Buswell, S. Austin, A. Gibb, and T. Thorpe, "Fabricating construction components using layered manufacturing technology," Global Innovation in Construction Conference, 2009;512-520.
    [16] R. Mathur, "3D printing in architecture," International Journal of Innovative Science, Engineering & Technology, 2016;3, 583-591.
    [17] A. E. Alexander, N. Wake, L. Chepelev, P. Brantner, J. Ryan, and K. C. Wang, "A guideline for 3D printing terminology in biomedical research utilizing ISO/ASTM standards," 3D Printing in Medicine, 2021;7, 1-6.
    [18] M. Salmi, "Additive manufacturing processes in medical applications," Materials, 2021;14, 191-207.
    [19] F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano, and P. Fino, "Overview on additive manufacturing technologies," Proceedings of the IEEE, 2017;105, 593-612.
    [20] M. A. Tehfe, F. Louradour, J. Lalevée, and J.-P. Fouassier, "Photopolymerization reactions: On the way to a green and sustainable chemistry," Applied Sciences, 2013;3, 490-514.
    [21] J.-P. Fouassier and J. Lalevée, Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. John Wiley & Sons, 2012.
    [22] I. V. Khudyakov, "Fast photopolymerization of acrylate coatings: Achievements and problems," Progress in Organic Coatings, 2018;121, 151-159.
    [23] S. Shanmugam, J. Xu, and C. Boyer, "Photocontrolled living polymerization systems with reversible deactivations through electron and energy transfer," Macromolecular Rapid Communications, 2017;38, 1700143-1700183.
    [24] Z. Zhang, N. Corrigan, A. Bagheri, J. Jin, and C. Boyer, "A versatile 3D and 4D printing system through photocontrolled RAFT polymerization," Angewandte Chemie, 2019;131, 18122-18131.
    [25] B. L. Buss and G. M. Miyake, "Photoinduced controlled radical polymerizations performed in flow: methods, products, and opportunities," Chemistry of Materials, 2018;30, 3931-3942.
    [26] C. Noè, S. Malburet, A. Bouvet-Marchand, A. Graillot, C. Loubat, and M. Sangermano, "Cationic photopolymerization of bio-renewable epoxidized monomers," Progress in Organic Coatings, 2019;133, 131-138.
    [27] F. Zhang, L. Zhu, Z. Li, S. Wang, J. Shi, W. Tang, N. Li, and J. Yang, "The recent development of vat photopolymerization: A review," Additive Manufacturing, 2021;48, 102423-102443.
    [28] F. Dumur, "Recent advances on carbazole-based photoinitiators of polymerization," European Polymer Journal, 2020;125, 109503-109526.
    [29] H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, "Photo-curing 3D printing technique and its challenges," Bioactive Materials, 2020;5, 110-115.
    [30] F. P. Melchels, J. Feijen, and D. W. Grijpma, "A review on stereolithography and its applications in biomedical engineering," Biomaterials, 2010;31, 6121-6130.
    [31] F. Liravi, S. Das, and C. Zhou, "Separation force analysis and prediction based on cohesive element model for constrained-surface Stereolithography processes," Computer-Aided Design, 2015;69, 134-142.
    [32] X. Song, Y. Chen, T. W. Lee, S. Wu, and L. Cheng, "Ceramic fabrication using Mask-Image-Projection-based Stereolithography integrated with tape-casting," Journal of Manufacturing Processes, 2015;20, 456-464.
    [33] S. Zakeri, M. Vippola, and E. Levänen, "A comprehensive review of the photopolymerization of ceramic resins used in stereolithography," Additive Manufacturing, 2020;35, 101177-101191.
    [34] 沈育芳, 謝明佑, and 陳怡文, "3D 成型技術之介紹與應用," 科儀新知, 2019;219, 90-98.
    [35] J. C. Wang, M. Ruilova, and S. J. Hsieh, "A web-based platform for automated vat photopolymerization additive manufacturing process," The International Journal of Advanced Manufacturing Technology, 2022;119, 2721-2742.
    [36] X. Wu, C. Xu, and Z. Zhang, "Preparation and optimization of Si3N4 ceramic slurry for low-cost LCD mask stereolithography," Ceramics International, 2021;47, 9400-9408.
    [37] D. Colombani, "Chain-growth control in free radical polymerization," Progress in Polymer Science, 1997;22, 1649-1720.
    [38] W. Y. Chiu, G. M. Carratt, and D. S. Soong, "A computer model for the gel effect in free-radical polymerization," Macromolecules, 1983;16, 348-357.
    [39] J. Li, Y. Gui, K. Qin, J. Yu, C. Guo, J. Yang, C. Zhang, D. Jiang, and X. Wang, "Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing," Polymer Bulletin, 2016;73, 571-585.
    [40] R. L. Truby and J. A. Lewis, "Printing soft matter in three dimensions," Nature, 2016;540, 371-378.
    [41] Q. Cheng, Y. Zheng, T. Wang, D. Sun, and R. Lin, "Yellow resistant photosensitive resin for digital light processing 3D printing," Journal of Applied Polymer Science, 2020;137, 48369-48377.
    [42] N. S. Allen, "Photoinitiators for UV and visible curing of coatings: mechanisms and properties," Journal of Photochemistry and Photobiology A: Chemistry, 1996;100, 101-107.
    [43] A. R. Jagtap and A. More, "Developments in reactive diluents: a review," Polymer Bulletin, 2021;79, 1-42.
    [44] P. Czub, "Application of modified natural oils as reactive diluents for epoxy resins," Macromolecular Symposia, 2006;242, 60-64.
    [45] G. Phalak, D. Patil, V. Vignesh, and S. Mhaske, "Development of tri-functional biobased reactive diluent from ricinoleic acid for UV curable coating application," Industrial Crops and Products, 2018;119, 9-21.
    [46] K. Yurugi, A. Fukada, and K. Matsukawa, Reactive diluent and curable resin composition. U.S. Patent, 6767980, 2004.
    [47] J. Zhou, X. Allonas, A. Ibrahim, and X. Liu, "Progress in the development of polymeric and multifunctional photoinitiators," Progress in Polymer Science, 2019;99, 101165-101181.
    [48] R. Schwalm, UV coatings: basics, recent developments and new applications. Elsevier, 2006.
    [49] K. Dietliker, T. Jung, J. Benkhoff, H. Kura, A. Matsumoto, H. Oka, D. Hristova, G. Gescheidt, and G. Rist, "New developments in photoinitiators," Macromolecular Symposia, 2004;217, 77-98.
    [50] C. G. Roffey, Photogeneration of reactive species for UV curing. Wiley, 1997.
    [51] X. Allonas, C. C. Barghorn, K. W. Bögl, N. Helle, and G. A. Schreiber, Radiation chemistry. Ullmann's Encyclopedia of Industrial Chemistry, 2000.
    [52] M. Gastaldi, F. Cardano, M. Zanetti, G. Viscardi, C. Barolo, S. Bordiga, S. Magdassi, A. Fin, and I. Roppolo, "Functional dyes in polymeric 3D printing: applications and perspectives," ACS Materials Letters, 2020;3, 1-17.
    [53] S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, "Polymers for 3D printing and customized additive manufacturing," Chemical Reviews, 2017;117, 10212-10290.
    [54] S. L. Rosen, Fundamental principles of polymeric materials for practicing engineers. Barnes & Noble, 1971.
    [55] M. Rahman and C. S. Brazel, "The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges," Progress in polymer science, 2004;29, 1223-1248.
    [56] F. Wang, Y. Chong, F. Wang, and C. He, "Photopolymer resins for luminescent three‐dimensional printing," Journal of Applied Polymer Science, 2017;134, 44988-44996.
    [57] 何志松 and 王維廷, "探討聚酯壓克力樹脂配方對性質之影響," Journal of Science and Engineering Technology, 2017;13, 33-43.
    [58] D. Lin, W. F. Shi, K. M. Nie, and Y. C. Zhang, "Photopolymerization of hyperbranched aliphatic acrylated poly (amide ester). I. Synthesis and properties," Journal of Applied Polymer Science, 2001;82, 1630-1636.
    [59] H. Wei, H. Kou, W. Shi, H. Yuan, and Y. Chen, "Photopolymerization kinetics of dendritic poly (ether–amide) s," Polymer, 2001;42, 6741-6746.
    [60] R. S. Davidson, Exploring the science, technology and applications of UV and EB curing. Sita Technology, 1999.
    [61] J. Shao, Y. Huang, and Q. Fan, "Visible light initiating systems for photopolymerization: status, development and challenges," Polymer Chemistry, 2014;5, 4195-4210.
    [62] C. Zhou, Y. Chen, Z. Yang, and B. Khoshnevis, "Digital material fabrication using mask‐image‐projection‐based stereolithography," Rapid Prototyping Journal, 2013;19, 153-165.
    [63] H. Ye, A. Venketeswaran, S. Das, and C. Zhou, "Investigation of separation force for constrained-surface stereolithography process from mechanics perspective," Rapid Prototyping Journal, 2017;23, 696-710.
    [64] Y. M. Huang and C. P. Jiang, "On-line force monitoring of platform ascending rapid prototyping system," Journal of Materials Processing Technology, 2005;159, 257-264.
    [65] Y. Pan, H. He, J. Xu, and A. Feinerman, "Study of separation force in constrained surface projection stereolithography," Rapid Prototyping Journal, 2017;23, 353-361.
    [66] X. Kang, X. Li, Y. Li, X. Zhang, and Y. Duan, "Continuous 3D printing by controlling the curing degree of hybrid UV curing resin polymer," Polymer, 2021;237, 124284-124292.
    [67] L. Wu, Z. Dong, H. Du, C. Li, N. Fang, and Y. Song, "Bioinspired ultra-low adhesive energy interface for continuous 3D printing: reducing curing induced adhesion," Research, 2018;2018, 1-10.
    [68] Q. Lian, F. Yang, H. Xin, and D. Li, "Oxygen-controlled bottom-up mask-projection stereolithography for ceramic 3D printing," Ceramics International, 2017;43, 14956-14961.
    [69] A. Alamdari, J. Lee, M. Kim, M. O. F. Emon, A. Dhinojwala, and J. W. Choi, "Effects of surface energy reducing agents on adhesion force in liquid bridge microstereolithography," Additive Manufacturing, 2020;36, 101522-101531.
    [70] N. T. Nguyen, "A Conductivity Testing System Coupled with a Tensile Testing Machine to Measure the Surface Properties of Polymer Specimens," 2012.
    [71] K. Merry, C. Napier, V. Chung, B. C. Hannigan, M. MacPherson, C. Menon, and A. Scott, "The Validity and Reliability of Two Commercially Available Load Sensors for Clinical Strength Assessment," Sensors, 2021;21, 8399-8414.
    [72] H. Gojzewski, Z. Guo, W. Grzelachowska, M. G. Ridwan, M. A. Hempenius, D. W. Grijpma, and G. J. Vancso, "Layer-by-layer printing of photopolymers in 3D: How weak is the interface?," ACS Applied Materials & Interfaces, 2020;12, 8908-8914.
    [73] S. Khaderi, N. Fleck, E. Arzt, and R. McMeeking, "Detachment of an adhered micropillar from a dissimilar substrate," Journal of the Mechanics and Physics of Solids, 2015;75, 159-183.
    [74] Q. Zhang, S. Weng, C. M. Hamel, S. M. Montgomery, J. Wu, X. Kuang, K. Zhou, and H. J. Qi, "Design for the reduction of volume shrinkage-induced distortion in digital light processing 3D printing," Extreme Mechanics Letters, 2021;48, 101403-101414.
    [75] Y.-J. Huang and C.-M. Liang, "Volume shrinkage characteristics in the cure of low-shrink unsaturated polyester resins," Polymer, 1996;37, 401-412.
    [76] B. Evans and P. Jacobs, The development of photopolymer modulus with actinic exposure. Proceedings of 2nd International Conference on Rapid Prototyping, 1991.
    [77] T. H. Chiang and T. E. Hsieh, "A study of monomer's effect on adhesion strength of UV-curable resins," International Journal of Adhesion and Adhesives, 2006;26, 520-531.
    [78] O. Nuyken, R. Böhner, and C. Erdmann, "Oxetane photopolymerization—A system with low volume shrinkage," Macromolecular Symposia, 1996, 107, 125-138.
    [79] C. Sarosi, M. Moldovan, A. Soanca, A. Roman, T. Gherman, A. Trifoi, A. M. Chisnoiu, S. Cuc, M. Filip, G. F. Gheorghe, and R. M. Chisnoiu, "Effects of Monomer Composition of Urethane Methacrylate Based Resins on the C= C Degree of Conversion, Residual Monomer Content and Mechanical Properties," Polymers, 2021;13, 4415-4428.
    [80] 李德治,林孟儒,童惠玲, 統計學. 博碩文化股份有限公司, 2021.
    [81] P. Kardar, M. Ebrahimi, S. Bastani, and M. Jalili, "Using mixture experimental design to study the effect of multifunctional acrylate monomers on UV cured epoxy acrylate resins," Progress in Organic Coatings, 2009;64, 74-80.
    [82] M. Bakar and F. Djaider, "Effect of plasticizers content on the mechanical properties of unsaturated polyester resin," Journal of Thermoplastic Composite Materials, 2007;20, 53-64.

    無法下載圖示 全文公開日期 2032/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2120/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE