簡易檢索 / 詳目顯示

研究生: 王湘華
Hsiang-Hua Wang
論文名稱: 小分子量絲膠蛋白在幹細胞分子生物學及免疫學上的影響
Effects of Low Molecular Weight Sericin on Stem Cell Molecular Biology and Macrophage Immunology
指導教授: 洪伯達
Po-Da Hong
口試委員: 程君弘
Juin-Hong Cherng
劉正哲
Chen-Che Liu
蔡協致
Hsieh-Chih Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 54
中文關鍵詞: 蠶絲絲膠小分子量高溫高壓脫膠幹細胞巨噬細胞免疫反應人類細胞激素斑點黏合即時聚合酶鏈鎖反應
外文關鍵詞: Silk, Sericin, Low molecular weight, HTHP degumming, Stem cell, Macrophage, Immune response, Human cytokine, Focal adhesion, qPCR
相關次數: 點閱:307下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 絲膠蛋白(Sericin)為蠶絲蛋白的一種,許多文獻已經證實了絲膠蛋白擁有良好的生物降解性、生物相容性及抗菌、抗紫外線等特性,是胺基酸組成相當豐富的天然高分子。並且,從文獻中發現水溶性的絲膠蛋白對於細胞貼附和組織工程之發展能提供相當的助益,驅使在細胞生物學應用上產生本研究主題與方向。另外,為了避免大分子量蛋白可能造成人體的過敏反應,以及提升材料進入皮膚表層的效率,此研究著重在於提取分子量小於10 kDa的絲膠蛋白進行細胞生物實驗。
    本研究目的在於了解小分子量絲膠蛋白作用於幹細胞貼附及巨噬細胞產生的免疫反應情形。利用高溫高壓反應(HTHP)將蠶繭中的絲膠與絲素進行分離,分離的過程稱為脫膠(Degum);相較於其他添加物(酵素和化學物)的脫膠方法得到的絲膠蛋白斷裂的點與分子量固定,而利用高溫高壓的方式,絲膠藉由熱能得以全面性斷鍵,不僅可以簡化脫膠程序,還能避免添加物汙染,得到純度較高的小分子量絲膠蛋白。脫膠過後的絲膠蛋白,會利用高效能過濾膜(Ultrafiltration Membrane System),針對鎖定的分子量範圍進行篩選,同時,利用傅立葉轉換紅外光譜(FTIR)對高溫高壓脫膠後的絲膠產物進行二級結構鑑定,確保溫度及壓力的作用下,不會影響蠶絲蛋白結構。分子量篩選過的絲膠蛋白應用不同的分子量鑑定技術確認其分子量,包括十二烷基硫酸鈉聚丙烯酰胺凝膠電泳 (SDS-PAGE)、膠體滲透層析儀(GPC)、液相層析質譜儀(LC-MS)和基質輔助雷射脫附游離飛行質譜儀(MALDI-TOF),結果比對之後,可以得到在預期10 kDa以下,接著將絲膠材料與細胞培養進行實驗。
    小分子量絲膠蛋白首先經過人體皮膚纖維母細胞(WS1)共同培養的生物相容性測試,相較於尚未分離分子量的絲膠和大分子量的絲膠結果,都顯示小分子量的絲膠明顯提升細胞存活率。而材料的免疫反應亦是未來實際應用在生物體上的一大課題,本研究是利用人類巨噬細胞株(U937)與小分子量絲膠進行共同培養,觀察細胞內部之基因表達,發現絲膠對於巨噬細胞免疫反應的調節作用,其結果與巨噬細胞分泌的功能性蛋白表現一致,得到了小分子量絲膠不會引發巨噬細胞活化,甚至可以調控輕微發炎反應的重要結論。另外,將人體口腔脂肪幹細胞植入到含有小分子量絲膠塗層的培養盤中,以正常的培養條件下進行培養,觀察絲膠蛋白是否影響細胞存活率,並且利用即時聚合酶鏈式反應(qPCR)和細胞激素蛋白質濃度分析(Cytokine Assay),同時查看幹細胞內的基因表現和釋放的功能性蛋白表現,推測出絲膠蛋白影響幹細胞的訊息傳導路徑,希望未來能夠由此發展絲膠蛋白在幹細胞的多元應用。


    Sericin is a kind of globular protein and it is a natural polymer with biodegradable, biocompatible, and anti-bacterial characteristics. Due to the multiple amino acid and water-soluble properties, it provides more conducive to use in cell adhesion for tissue engineering. And low molecular molecules can easily permeate into human skin and to avoid allergen.
    This research aimed to harvest the lower molecular weight of sericin (LMw-sericin) and its use to study the influence of the stem cell focal adhesion and macrophage immune responses. In order to harvest the low molecular weight of sericin, firstly, the silkworm Bombyx mori cocoon have been degummed and hydrolysed by using the condition of high-temperature and high-pressure (HTHP). The degumming material has filtered with ultrafiltration membrane system in order to gather low molecular weight of sericin. The low molecular weight of obtained sericin was determined by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), gel permeation chromatography (GPC), liquid chromatography-mass spectrometry (LC-MS) and matrix-assisted laser desorption ionization- time of flight (MALDI-TOF). The results showed that the molecular weight of the harvested sericin was consistently below 10 kDa.
    In the stem cell boost and induction system, the low molecular weight of sericin was coated on plates before cells injected into maintained culture medium. Further, this study focused on the gene expression of focal adhesion, human cytokines and chemokines was analyzed by quantitative real-time polymerase chain reaction (qPCR) and cytokine assay. Then, the toxicity of sericin and gene expression were compared. The gene expression of stem cell has been shown that the pathways and it leads to motility, survival and proliferation. Furthermore, sericin-induction macrophages indicate that the regulation of the immune responses and appear without violent activation. Overall, based on the findings, it is believed that the low molecular weight of sericin can regulate cellular inflammatory responses and have potential applications in stem cell biology.

    Introduction Chapter 1: Literature Review 1.1 Characteristic of Sericin 1.1.1 Sericin 1.1.3 Silk Degumming 1.2 The Bio-absorbed Way of Molecules 1.2.1 Percutaneous Absorption 1.2.2 Mechanisms of Endocytosis 1.3 Tissue Engineering 1.3.1 Wound Healing 1.3.1.1 Wound Healing by Fibroblast 1.3.1.2 Wound Healing by Adipose-derived Adult Stem Cell 1.3.2 Immunological Responses 1.3.2.1 Immunological Responses by Macrophage 1.4 Aims Chapter 2: Experimental Section 2.1 Materials 2.1.1 Sericin 2.1.2 Fibroblast 2.1.3 Adipose-derived Adult Stem Cell 2.1.4 Macrophage 2.2 Experimental Flow Chart 2.3 Methods 2.3.1 Preparation of Sericin Solution 2.3.2 Molecular Weight Determination 2.3.2.1 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 2.3.2.2 Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) 2.3.2.3 Liquid Chromatography–Mass Spectrometry (LC-MS) 2.3.2.4 Gel Permeation Chromatography (GPC) 2.3.3 Fourier Transform Infrared Spectroscopy (FTIR) 2.3.4 Cell Culture 2.3.4.1 Fibroblast 2.3.4.2 Adipose-Derived Adult Stem Cell 2.3.4.3 Macrophage 2.3.5 Cytotoxicity/Cell Proliferation 2.3.5.1 Statistical Analysis 2.3.6 RNA Isolation and cDNA Synthesis 2.3.7 Quantitative Real Time Polymerase Chain Reaction (qPCR) 2.3.8 Cytokine Assay Chapter 3: Results and Discussion 3.1 Molecular Weight of Sericin 3.1.1 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 3.1.4 Gel Permeation Chromatography (GPC) 3.1.2 Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) 3.1.3 Liquid Chromatography–Mass Spectrometry (LC-MS) 3.2 Conformational Analysis of Sericin 3.2.1 Assignment of Infrared Bands 3.2.2 Secondary Structure Analysis 3.3 Sericin Affect Cells 3.3.1 Biocompatibility of Sericin 3.3.2 The Influence on Macrophage (U937) 3.3.2.1 The Gene Expression of Macrophage by Treated with LMw-Sericin 3.3.2.2 The Cytokine Expression of Macrophage by Treated with LMw-Sericin 3.3.3 The Gene Expression of Oral Fat Stem Cell by Treated with LMw-Sericin Conclusion Reference

    Tsubouchi, K., et al., Sericin enhances attachment of cultured human skin fibroblasts. Bioscience Biotechnology and Biochemistry, 2005. 69(2): p. 403-5.
    Aramwit, P., T. Siritientong, and T. Srichana, Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Management and Research, 2012. 30(3): p. 217-24.
    Maheshwari, G., et al., Cell adhesion and motility depend on nanoscale RGD clustering. Journal of Cell Science, 2000. 113(10): p. 1677.
    Jin Yoon, J., et al., Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials, 2004. 25(25): p. 5613-5620.
    Yanes, O., et al., Metabolic oxidation regulates embryonic stem cell differentiation. Nature Chemical Biology, 2010. 6(6): p. 411-417.
    Hogarth-Scott, R.S., The molecular weight range of nematode allergens. Immunology, 1967. 13(5): p. 535-537.
    Cochrane, S., et al., Factors influencing the incidence and prevalence of food allergy. Allergy, 2009. 64(9): p. 1246-1255.
    Bos, J.D. and M.M.H.M. Meinardi, The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology, 2000. 9(3): p. 165-169.
    Vitorino, C., J. Sousa, and A. Pais, Overcoming the Skin Permeation Barrier: Challenges and Opportunities. Current Pharmaceutical Design, 2015. 21(20): p. 2698-2712.
    周斌 and 姚炎庆, 高温脱胶的可行性试验. 浙江理工大學學報, 2008. 25(4): p. 410-414.
    Lamoolphak, W., W. De-Eknamkul, and A. Shotipruk, Hydrothermal production and characterization of protein and amino acids from silk waste. Bioresource Technology, 2008. 99(16): p. 7678-7685.
    Mangesh D. Teli, V.M.R., Comparative Study of the Degumming of Mulberry, Muga, Tasar and Ericream Silk, FIBRES & TEXTILES in Eastern Europe, 2011. p. 10-14.
    Wang, Y.J. and Y.Q. Zhag, Three-layered sericins around the silk fibroin fiber from Bombyx mori cocoon and their amino acid composition. Advanced Materials Research, 2011. 175-176: p. 158-163.
    Zhang, Y.-Q., Applications of natural silk protein sericin in biomaterials. Biotechnology Advances, 2002. 20: p. 91-100.
    Zhang, Y.-Q., et al., Synthesis of silk sericin peptides-L-asparaginase bioconjugates and their characterization. Journal of Chemical Technology and Biotechnology, 2006. 81(2): p. 136-145.
    David Kaplan, W.W.A., Barry Farmer, and Christopher Viney, Silk: Biology, Structure, Properties, and Genetics. Silk Polymers, 1993. 1: p. 2-16.
    Terada, S., et al., Preparation of silk protein sericin as mitogenic factor for better mammalian cell culture. Journal of Bioscience and Bioengineering, 2005. 100(6): p. 667-71.
    Aramwit, P., et al., The effect of sericin from various extraction methods on cell viability and collagen production. International Journal of Molecular Sciences, 2010. 11(5): p. 2200-11.
    Harneet Marwah, T.G., Amit K. Goyal,and Goutam Rath, Permeation enhancer strategies in transdermal drug delivery. Drug Delivery, 2016. 23(2): p. 564-578.
    Shimizu, H., Structure and function of the skin, in Shimizu's Dermatology. 2017, John Wiley and Sons, Ltd. p. 1-42.
    Hoeller, D., S. Volarevic, and I. Dikic, Compartmentalization of growth factor receptor signalling. Current Opinion in Cell Biology, 2005. 17(2): p. 107-111.
    Pastan, I. and M.C. Willingham, The Pathway of Endocytosis. Endocytosis, Pastan, I. and M.C. Willingham, Editors. 1985, Springer US: Boston, MA. p. 1-44.
    Child, H.W., Nanoparticles for Biomedical Applications, in Veterinary and Life Sciences2012, University of Glasgow. p. 1-176.
    Singer, A.J. and R.A.F. Clark, Cutaneous Wound Healing. New England Journal of Medicine, 1999. 341(10): p. 738-746.
    Chen, L., et al., Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLOS ONE, 2008. 3(4): p. 1886.
    Hasegawa, T., et al., An Allogeneic Cultured Dermal Substitute Suitable for Treating Intractable Skin Ulcers and Large Skin Defects Prior to Autologous Skin Grafting: Three Case Reports. The Journal of Dermatology, 2005. 32(9): p. 715-720.
    Lamme, E.N., et al., Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formation. Wound Repair and Regeneration, 2002. 10(3): p. 152-160.
    Chudzik, K., Generation of induced pluripotent stem cells from fibroblast cell lines and gene editing in pluripotent stem cell. Genetics Home Reference. U.S. National Library of Medicine, 2014.
    Erickson, G.R., et al., Chondrogenic Potential of Adipose Tissue-Derived Stromal Cells in Vitro and in Vivo. Biochemical and Biophysical Research Communications, 2002. 290(2): p. 763-769.
    Gimble, J.M. and F. Guilak, Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 2003. 5(5): p. 362-369.
    V. Planat-Bénard, C.M., M. André, et al., Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 2004. 94(2).
    Zuk, P.A., et al., Human Adipose Tissue Is a Source of Multipotent Stem Cells. Molecular Biology of the Cell, 2002. 13(12): p. 4279-4295.
    Safford, K.M., et al., Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 2002. 294(2): p. 371-379.
    Franceschi, C., M. Bonafè, and S. Valensin, Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine, 2000. 18(16): p. 1717-1720.
    Singh, A., et al., Macrophage-targeted delivery systems for nucleic acid therapy of inflammatory diseases. J Control Release, 2014. 190: p. 515-30.
    Sharp, B.M., Conversion of the U937 Monocyte into ''Macrophage-Like'' Populations Exhibiting M1 or M2 Characteristics, Microbiology and Immunology, 2013. Wright State University: Browse all Theses and Dissertations. p. 69.
    Sintiprungrat, K., et al., Alterations in cellular proteome and secretome upon differentiation from monocyte to macrophage by treatment with phorbol myristate acetate: Insights into biological processes. Journal of Proteomics, 2010. 73(3): p. 602-618.
    Minafra, L., et al., Proteomic differentiation pattern in the U937 cell line. Leukemia Research, 2011. 35(2): p. 226-236.
    Krimm, S. and J. Bandekar, Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins, Advances in Protein Chemistry, C.B. Anfinsen, J.T. Edsall, and F.M. Richards, Editors. 1986, Academic Press. p. 181-364.
    Hidetoshi Teramoto, M.M., Molecular Orientation Behavior of Silk Sericin Film as Revealed by ATR Infrared Spectroscopy. Biomacromolecules, 2005. 6: p. 2049-2057.
    Teramoto, H. and M. Miyazawa, Analysis of Structural Properties and Formation of Sericin Fiber by Infrared Spectroscopy. Journal of Insect Biotechnology and Sericology, 2003. 72(3): p. 157-162.
    Purcell, J.M. and H. Susi, Solvent denaturation of proteins as observed by resolution-enhanced Fourier transform infrared spectroscopy. Journal of Biochemical and Biophysical Methods, 1984. 9(3): p. 193-199.
    Clark, A.H., D.H.P. Saunderson, and A. Suggett, Infrared And Laser-Raman Spectroscopic Studies Of Thermally-Induced Globular Protein Gels. International Journal of Peptide and Protein Research, 1981. 17(3): p. 353-364.
    Zhang, X. and P. Wyeth, Using FTIR spectroscopy to detect sericin on historic silk. Science China Chemistry, 2010. 53(3): p. 626-631.
    Shu, M.-H., et al., Anti-inflammatory, gastroprotective and anti-ulcerogenic effects of red algae Gracilaria changii (Gracilariales, Rhodophyta) extract. BMC Complementary and Alternative Medicine, 2013. 13(1): p. 61.
    Wynn, T.A. and T.R. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine, 2012. 18: p. 1028.
    Tubby, C., et al., Immunological basis of reversible and fixed airways disease. Clinical Science, 2011. 121(7): p. 285.
    Weyand, C.M. and J.J. Goronzy, Immune mechanisms in medium and large-vessel vasculitis. Nature Reviews Rheumatology, 2013. 9: p. 731.
    Vasiliadou, I. and I. Holen, The role of macrophages in bone metastasis. Journal of Bone Oncology, 2013. 2(4): p. 158-166.
    Cervantes, J.L., et al., Phagosomal TLR signaling upon Borrelia burgdorferi infection. Frontiers in Cellular and Infection Microbiology, 2014. 4: p. 55.
    Tamiya, T., et al., Suppressors of Cytokine Signaling (SOCS) Proteins and JAK/STAT Pathways:Regulation of T-Cell Inflammation by SOCS1 and SOCS3, Arteriosclerosis Thrombosis and Vascular Biology, 2011. 31(5): p. 980-985.
    Arango Duque, G. and A. Descoteaux, Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Frontiers in Immunology, 2014. 5: p. 491.
    Ménard, D., et al., Anti-inflammatory effects of epidermal growth factor on the immature human intestine. Physiological Genomics, 2012. 44(4): p. 268-280.

    QR CODE