簡易檢索 / 詳目顯示

研究生: 謝孟廷
Meng-Ting Hsieh
論文名稱: 以鋁矽/金矽合金與石墨之共蒸鍍來製備碳化矽之研究
Formation of silicon carbide by co-evaporation of aluminum-silicon/gold-silicon alloy and graphite
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 蔡安邦
An-Pang Tsai
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 117
中文關鍵詞: 碳化矽金矽合金鋁矽合金石墨共蒸鍍
外文關鍵詞: Silicon carbide, Aluminum-silicon alloy, Gold-silicon alloy, Graphite, Co-evaporation
相關次數: 點閱:244下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對碳化矽的低溫製備,考慮利用矽化物合金的低融點特性,期望在較低的溫度下使其與活性碳物種反應來生成碳化矽鍵結。
本研究將採用電子束與熱蒸鍍法共蒸鍍石墨與金矽/鋁矽合金,分別於合金共晶溫度(363℃, 577℃)附近使矽源蒸發,並在矽(100)基板表面與氣化之碳源結合而成長出碳化矽薄膜。實驗重點在調控基板溫度以及蒸發源的流束以獲得產物中碳化矽鍵結的最大化。
以FTIR, XPS, Raman, XRD及SEM等分析手法,針對製備出的材質進行鍵結型態、元素成分、晶體結構及薄膜表面形態進行分析。結果顯示,使用鋁矽合金系統製備100 nm厚薄膜的實驗,在基板溫度620℃與蒸發源的Si/C流束比為16倍時,由XPS C1s光譜分析得到長膜中碳化矽鍵結比例僅為10%。當改使用金矽合金系統製備50 nm厚薄膜時,在基板溫度580℃與蒸發源的Si/C流束比為5.5倍時,長膜中碳化矽鍵結比例提升到55%,明顯地減少了非碳化矽雜相之生成。


In this thesis, we aimed at preparing silicon carbide thin films at low temperatures by co-depositing silicide alloy that has a low eutectic point with carbon. First of all, aluminum-silicon alloy that has an eutectic point of 577 ℃and carbon were evaporated simultaneously using vacuum evaporation and electron beam evaporation techniques, respectively. The supplying flux ratio of Si/C and substrate temperature were varied to maximize the bonding of silicon carbide of the deposits on Si(100) wafers. The result showed that the film grown at a Si/C flux ratio of 16 and at a substrate temperature of 620℃has the largest amount of SiC bonding of 10% according to a quantitative analysis of XPS C1s spectrum. Then, gold-silicide that has a much lower eutectic point (363℃) was used instead. The result showed that the film grown at a Si/C flux ratio of 5.5 and at a substrate temperature of 580℃ has a much higher SiC bonding of 55%, indicating that gold-silicide is a suitable Si source for SiC formation, most plausibly due to the inertness of gold to form phases other than SiC.

中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究動機與方向 3 第二章 理論基礎 5 2.1碳化矽的結構 5 2.2碳化矽的性質 9 2.2.1寬能隙與高崩潰電場 9 2.2.2熱傳導率 15 2.2.3電子飽和速度 17 2.2.4化學安定性 19 2.3碳化矽晶圓的製備方式 20 2.3.2化學氣相沉積法(Chemical Vapor Deposition, CVD) 25 2.3.3液相磊晶法(Liquid Phase Epitaxy, LPE) 32 2.3.4分子束磊晶(Molecular Beam Epitaxy, MBE) 34 2.3.5氣液固機制(Vapor-liquid-solid mechanism, VLS) 35 2.4碳化矽的應用 37 第三章 實驗方法及步驟 38 3.1實驗構想 38 3.2實驗流程 41 3.3系統設備 42 3.4實驗材料 44 3.5.矽基板前處理 46 3.6分析儀器 48 3.6.1橢圓偏光儀(Spectroscopic Ellipsometry, SE) 48 3.6.2 X光繞射儀(D8 PHASER X-ray Diffractometer ) 49 3.6.3傅立葉紅外線光譜儀(FTIR) 51 3.6.4 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 54 3.6.5拉曼散射光譜儀(Raman Scattering Spectroscope) 55 3.6.6場效高解析掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, SEM) 57 第四章 結果與討論 58 4.1 以鋁矽合金與石墨共蒸鍍製備碳化矽薄膜 59 4.1.1不同基板溫度對碳化矽薄膜的影響 60 4.1.2不同鍍率對碳化矽薄膜的影響 71 4.2 以金矽合金與石墨共蒸鍍製備碳化矽薄膜 82 第五章 總結論 95 第六章 參考文獻 96

[1] J.Bardeen and W. H.Brattain, “Transistor, a semiconductor triode,” Proc. IEEE, vol. 86, no. 1, pp. 29–30, Jul.1998.
[2] S. M.Sze and M. K.Lee, Semiconductor devices, physics and technology. Wiley, 2012.
[3] P. L.Dreike, D. M.Fleetwood, D. B.King, D. C.Sprauer, and T. E.Zipperian, “An overview of high-temperature electronic device technologies and potential applications,” IEEE Trans. Components, Packag. Manuf. Technol. Part A, vol. 17, no. 4, pp. 594–609, 1994.
[4] T.Kimoto and J. A.Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications. Wiley, 2014.
[5] http://www.iabrasive.com/articles/rise-of-the-3rd-generation-semiconductor-silicon-carbide-technology.
[6] W. F.Smith, Foundations of Materials Science and Engineering. McGraw-Hill, 1993.
[7] S.Goel, X.Luo, R. L.Reuben, and W.BinRashid, “Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–9, 2011.
[8] J. L.Hudgins, G. S.Simin, E.Santi, and M. A.Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 907–914, May2003.
[9] http://www.americanmicrosemi.com/tutorials/diode.htm.
[10] T. P.Chow and R.Tyagi, “Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481–1483, 1994.
[11] V. E.Chelnokov and A. L.Syrkin, “High temperature electronics using SiC: Actual situation and unsolved problems,” Mater. Sci. Eng. B, vol. 46, no. 1–3, pp. 248–253, 1997.
[12] A.Richter, M.Heorteis, J.Benick, S.Henneck, M.Hermle, and S. W.Glunz, “Towards industrially feasible high-efficiency n-type Si solar cells with boron-diffused front side emitter - Combining firing stable Al2O 3 passivation and fine-line printing,” Conf. Rec. IEEE Photovolt. Spec. Conf., no. June, pp. 3587–3592, 2010.
[13] G. A.Slack, “Thermal conductivity of pure and impure silicon, silicon carbide, and diamond,” J. Appl. Phys., vol. 35, no. 12, pp. 3460–3466, 1964.
[14] E.Johnson, “Physical limitations on frequency and power parameters of transistors,” IRE Int. Conv. Rec., vol. 13, pp. 27–34, 1966.
[15] M.Rais-Zadeh, Rais-Zadeh, Mina Gokhale, Vikrant Jayant Ansari, Azadeh Faucher, Marc Théron, Didier Cordier, Yvon Buchaillot, Lionel “Gallium nitride as an electromechanical material,” J. Microelectromechanical Syst., vol. 23, no. 6, pp. 1252–1271, 2014.
[16] http://www.nedo.go.jp/.
[17] M.Kato, M.Ichimura, E.Arai, and P.Ramasamy, “Electrochemical Etching of 6H-SiC Using Aqueous KOH Solutions with Low Surface Roughness,” Jpn. J. Appl. Phys., vol. 42, no. Part 1, No. 7A, pp. 4233–4236, 2003.
[18] I. B. C.P.J.Jorgensen M.E.Wadsworth, “Oxidation of silicon carbide,” J. Am. Ceram. Soc., vol. 42(12), no. December, pp. 613–616, 1959.
[19] W.Knippenberg, “Growth Phenomena in Silicon Carbide,” Philips Res. Reports, vol. 18, p. 161, 1963.
[20] Y. M.Tairov and V. F.Tsvetkov, “Investigation of growth processes of ingots of silicon carbide single crystals,” J.Cryst.Growth, vol. 43, pp. 209–212, 1978.
[21] P. G.Neudeck and J. A.Powell, “Performance Limiting Micropipe Defects in Silicon Carbide Wafers,” IEEE Electron Device Lett., vol. 15, no. 2, pp. 63–65, 1994.
[22] https://www.wolfspeed.com/materials.
[23] G.Dhanaraj, X. R.Huang, M.Dudley, V.Prasad, and R.-H.Ma, “2003 Silicon Carbide Crystals — Part I- Growth and Characterization,” Cryst. Growth Technol., pp. 181–232, 2003.
[24] H.Matsunami, S.Nishino, and H.Ono, “IVA-8 Heteroepitaxial Growth of Cubic Silicon Carbide on Foreign Substrates,” IEEE Trans. Electron Devices, vol. 28, no. 10, pp. 1235–1236, 1981.
[25] S. I.Nishizawa and M.Pons, “Growth and doping modeling of SiC-CVD in a horizontal hot-wall reactor,” Chem. Vap. Depos., vol. 12, no. 8–9, pp. 516–522, 2006.
[26] J. E.Ayers, Heteroepitaxy of semiconductors : theory, growth, and characterization. CRC Press, 2007.
[27] T.Ueda, H.Nishino, and H.Matsunami, “Crystal growth of SiC by step-controlled epitaxy,” J. Cryst. Growth, vol. 104, no. 3, pp. 695–700, 1990.
[28] K.Danno, K.Hashimoto, H.Saitoh, T.Kimoto, and H.Matsunami, “Low-concentration deep traps in 4H-SiC grown with high growth rate by chemical vapor deposition,” Japanese J. Appl. Physics, Part 2 Lett., vol. 43, no. 7 B, pp. 4–7, 2004.
[29] D. H.Hofmann and M. H.Muller, “Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals,” Mater. Sci. Eng. B, vol. 61--62, no. 0, pp. 29–39, 1999.
[30] A.Tanaka, N.Shiozaki, and H.Katsuno, “Synthesis and growth of 3C-SiC crystals from solution at 950°C,” J. Cryst. Growth, vol. 237–239, no. 1–4 II, pp. 1202–1205, 2002.
[31] T.Miyazawa, S.Yoshida, S.Misawa, S.Gonda, and I.Ohdomari, “Molecular and ion beam epitaxy of 3C-SiC,” Appl. Phys. Lett., vol. 45, no. 4, pp. 380–382, 1984.
[32] H.Matsunami, “Progress in epitaxial growth of SiC,” Phys. B, vol. 185, pp. 65–74, 1993.
[33] G.Ferro and C.Jacquier, “Growth by a vapour-liquid-solid mechanism: A new approach for silicon carbide epitaxy,” New Journal of Chemistry, vol. 28, no. 8. pp. 889–896, 2004.
[34] Y. F.Chen, X. Z.Liu, X. W.Deng, and Y. R.Li, “Characterization of 3C-SiC micro-pillars on Si(100) substrate grown by vapor-liquid-solid process,” Thin Solid Films, vol. 517, no. 9, pp. 2882–2885, 2009.
[35] M.Soueidan, G. Ferro, C. Jacquier, P. Godignon, J. Pezoldt, M. Lazar, B. Nsouli, and Y. Monteil, “Improvement of 4H-SiC selective epitaxial growth by VLS mechanism using Al and Ge-based melts,” Diam. Relat. Mater., vol. 16, no. 1, pp. 37–45, 2007.
[36] J.Lorenzzi, G.Ferro, F.Cauwet, V.Souliere, and D.Carole, “Growing 3C-SiC heteroepitaxial layers on α-SiC substrate by vapourliquidsolid mechanism from the AlGeSi ternary system,” J. Cryst. Growth, vol. 318, no. 1, pp. 397–400, 2011.
[37] 阿部華, Au-Si 共晶合金の構造と化学結合性に関する研究, vol. 38. 2008.
[38] R. F.Wolffenbuttel and K. D.Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A. Phys., vol. 43, no. 1–3, pp. 223–229, 1994.
[39] E.Jing, B.Xiong, and Y.Wang, “Low-temperature Au-Si wafer bonding,” J. Micromechanics Microengineering, vol. 20, no. 9, 2010.
[40] J.Westwater, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 15, no. 3, p. 554, 1997.
[41] G. E.Totten and D. S.MacKenzie, Handbook of aluminum. M. Dekker, 2003.
[42] Y.Wang, V.Schmidt, S.Senz, and U.Gösele, “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nat. Nanotechnol., vol. 1, no. 3, pp. 186–189, 2006.
[43] R. P.Elliott and F. A.Shunk, “The Au-Si (Gold-Silicon) system,” Bull. Alloy Phase Diagrams, vol. 4, no. 4, p. 362, 1983.
[44] J. L.Murray and A. J.McAlister, “The Al-Si (Aluminum-Silicon) system,” Bull. Alloy Phase Diagrams, vol. 5, no. 1, pp. 74–84, 1984.
[45] S.Baskaran, “Structure and Regulation of Yeast Glycogen Synthase,” no. August, 2010.
[46] Abdel-ilah EL Khalfi, EL Maati Ech-chamikh, Youssef Ijdiyaou, Mustapha Azizan, Abdelhadi Essafti, Lahcen Nkhaili, and Abdelkader Outzourhit, “Infrared and Raman Study of Amorphous Silicon Carbide Thin Films Deposited by Radiofrequency Cosputtering,” Spectrosc. Lett., vol. 47, no. 5, pp. 392–396, 2014.
[47] W. H.Weber and R. (Roberto)Merlin, Raman scattering in materials science. Springer, 2000.
[48] J. A.Freitas, Jr. and W. J.Moore, “Optical Studies of Undoped and Doped Wide Bandgap Carbide and Nitride Semiconductors,” Brazilian J. Phys., vol. 28, no. 1, pp. 12–18, Mar.1998.
[49] M.Science, “Transformation from amorphous to nano- crystalline SiC thin films prepared by HWCVD technique without ... Transformation from amorphous to nano-crystalline SiC thin films prepared by HWCVD technique without hydrogen dilution,” vol. 38, no. September, pp. 1333–1338, 2016.
[50] B. P.Swain and R. O.Dusane, “Multiphase structure of hydrogen diluted a-SiC:H deposited by HWCVD,” Mater. Chem. Phys., vol. 99, no. 2–3, pp. 240–246, 2006.
[51] E.Quiroga-González, J.Carstensen, C.Glynn, C.O’Dwyer, and H.Föll, “Pore size modulation in electrochemically etched macroporous p-type silicon monitored by FFT impedance spectroscopy and Raman scattering,” Phys. Chem. Chem. Phys., vol. 16, no. 1, pp. 255–263, 2014.
[52] Y.Sun, T.Miyasato, and J. K.Wigmore, “Characterization of excess carbon in cubic SiC films by infrared absorption,” J. Appl. Phys., vol. 85, no. 6, pp. 3377–3379, 1999.
[53] S.Sorieul, J. M.Costantini, L.Gosmain, L.Thomé, and J. J.Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter, vol. 18, no. 22, pp. 5235–5251, 2006.
[54] Y.Sun, H.Cui, L.Gong, J.Chen, P. K.Shen, and C. X.Wang, “Field nanoemitter: One-dimension Al4C3 ceramics,” Nanoscale, vol. 3, no. 7, p. 2978, Jul.2011.
[55] J. L.Kennedy, T. D.Drysdale, and D. H.Gregory, “Rapid, energy-efficient synthesis of the layered carbide, Al 4 C 3,” Green Chem., vol. 17, no. 1, pp. 285–290, Dec.2015.
[56] M. S. I. T.MSIT®, “Al-C-Si (Aluminium - Carbon - Silicon),” Springer, Berlin, Heidelberg, 2004, pp. 139–145.
[57] N. A.Belov, D. G.Eskin, and A. A.Aksenov, “Multicomponent phase diagrams : applications for commercial aluminum alloys,” Multicomponent Phase Diagrams, pp. 341–377, 2005.
[58] J. A.Silva, S.Quoizola, E.Hernandez, L.Thomas, and F.Massines, “Silicon carbon nitride films as passivation and antireflective coatings for silicon solar cells Surface & Coatings Technology Silicon carbon nitride fi lms as passivation and antire fl ective coatings for silicon solar cells,” Surf. Coat. Technol., vol. 242, no. February, pp. 157–163, 2018.

QR CODE