簡易檢索 / 詳目顯示

研究生: 程意惟
Vincent Cheng
論文名稱: 利用主路徑分析法探討新科技技術演變之管理意涵: 以石墨烯專利發展趨勢為例
Management implications of technology development trend through main path analysis: The case of Graphene patent
指導教授: 劉顯仲
John S. Liu
口試委員: 劉顯仲
何秀青
管中徽
陳宥彬
學位類別: 碩士
Master
系所名稱: 管理學院 - 管理學院MBA
School of Management International (MBA)
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 92
中文關鍵詞: 石墨烯主路徑分析引證網路集群分析
外文關鍵詞: Graphene, Main path analysis, Citation network, Cluster analysis
相關次數: 點閱:404下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯(Graphene)是近年來討論度極高的新材料,由於它是目前世界上已知材料中最薄、最堅硬、電阻率最小的奈米材料、彈性佳、透明度高,而有著「超級材料」的稱號。目前多國的研究單位及各大企業皆投入其中,伴隨著近年來石墨烯專利數量的持續增加,不過檢視相關回顧性文獻並無針對石墨烯專利有系統且完整地探討發展脈絡之架構。

    本研究透過Webpat專利資料庫,蒐集自2000年至2017年間核准的石墨烯專利,最終得到由843件專利相互間引用組成的引證網路,接著以總體關鍵延伸主路徑的方法分析石墨烯專利發展過程中的階段變化;以及使用Edge-betweenness clustering集群分析法,觀察石墨烯專利重大集群所聚焦的面向。

    研究結果發現,石墨烯專利發展時間歷程上分別有三個階段的發展,第一階段為開端階段,包括石墨烯板的製備,或將石墨烯材料結合於裝置;第二階段電路板的應用,著重於石墨烯於電路印刷板上的應用;第三階段多領域的應用,此時期於各個應用端皆有專利出現,且專利數量快速成長。透過集群分析可看出石墨烯專利分群於五大集群,分別為石墨烯場效電晶體、超薄奈米級石墨烯板製備、超級電容發展、複合材料的應用、石墨烯電子元件裝置應用,彼此各自有專注發展的議題。以及分析石墨烯重大專利權人及國家策略上不同的管理意涵。最後,根據本研究提出於石墨烯專利研究上的限制及未來建議。


    Graphene is a highly discussed new material in recent years. Because it is the thinnest, hardest and lowest resistivity nanomaterial known in the world, it has excellent elasticity and high transparency. At present, many research institutes and enterprises are involved in this field. With the continuous increase in the number of graphene patents in recent years, there is no systematic and complete examination of the framework for the development of graphene patents in reviewing relevant retrospective literature.

    Through the Webpat patent database, this study collected graphene patents approved from 2000 to 2017, and finally obtained a cited network composed of 843 patents, and then analyzed the development of graphene patents with an overall key extension of the main path Stage changes in the process; and the use of Edge-betweenness clustering cluster analysis to see the major aspects of the graphene patents focused cluster orientation.

    The results show that there are three stages of graphene patent development time history, the first stage is the beginning stage, including the preparation of graphene version, or the graphene material in the device; the second phase of the application of circuit boards, focusing on The application of graphene to printed circuit boards; the third phase of multi-domain applications, during which time there are all patent applications appear, and the rapid growth of the number of patents. Through cluster analysis, it can be seen that the graphene patents are grouped into five clusters, namely graphene field effect transistor, ultrathin nanometer scale graphene plate preparation, development of supercapacitor, application of composite material, application of graphene electronic component device, Have focused on the development of the issue. As well as analyzing the different management implications of graphene major patent holders and national strategies. Finally, the limitations and future suggestions on graphene patents are proposed based on this study.

    目錄 第一章 緒論 10 1.1 研究背景與研究動機 10 1.2 研究目的 11 1.3 研究架構 11 第二章 文獻探討 13 2.1 石墨烯技術簡介 13 2.2 單層石墨烯的製備 13 2.2.1 機械剝離法 13 2.2.2 化學氣相沉積法(CVD) 13 2.2.3 溶劑剝離法 13 2.2.4 還原氧化石墨烯法 14 2.3 石墨烯相關文獻回顧 15 第三章 研究方法 18 3.1 資料來源 18 3.2 資料蒐集與關鍵字檢索 18 3.3 主路徑分析 19 3.3.1 資訊流量 19 3.3.2 路徑追蹤 22 3.3.3 主路徑分析軟體應用 29 3.4 集群分析 30 第四章 研究結果與分析 31 4.1 石墨烯專利基本分析 31 4.2 石墨烯專利主路徑分析 35 4.3 集群分析 45 4.4 分群彙整 67 4.4.1 各集群特徵 67 4.4.2 各集群專利構成總表 70 4.5 專利權人及國家之技術策略分析 73 4.6 石墨烯專利國家間知識流動 76 第五章 結論與建議 84 5.1 石墨烯主路徑及分群結論 84 5.2 石墨烯研究專利之管理意涵 86 5.2.1 石墨烯專利權人及國家策略之管理意涵 86 5.2.2 台灣企業於石墨烯專利技術上之管理意涵 86 5.3 研究限制與未來建議 87 參考文獻 89 附錄-石墨烯專利 90

    參考文獻
    Arora, S., Gao, L., Ma, T., Shapira, P., & Youtie, J. (2011). Commercialization of New and Emerging Technologies: A Cross Country Comparison of Graphene Firms.
    Arora, S., Youtie, J., Shapira, P., Gao, L., & Ma, T. (2013). Entry strategies in an emerging technology: a pilot web-based study of graphene firms. Scientometrics, 95(3), 1189-1207.
    Barth, A., & Marx, W. (2008). Graphene-A rising star in view of scientometrics. arXiv preprint arXiv:0808.3320.
    Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149, 249-259.
    Brownson, D. A., & Banks, C. E. (2010). Graphene electrochemistry: an overview of potential applications. Analyst, 135(11), 2768-2778.
    Chen, Y.-B., Liu, J., & Lin, P. (2013). Recent trend in graphene for optoelectronics. Journal of Nanoparticle Research, 15(2), 1454.
    EDWARDS, L. (2017). Samsung Galaxy S9 could charge to full in just 12 minutes.
    Frazier, R. M., Daly, D. T., Swatloski, R. P., Hathcock, K. W., & South, C. R. (2009). Recent progress in graphene-related nanotechnologies. Recent patents on nanotechnology, 3(3), 164-176.
    Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
    Shapira, P., Gök, A., & Salehi, F. (2016). Graphene enterprise: mapping innovation and business development in a strategic emerging technology. Journal of Nanoparticle Research, 18(9), 269.
    Shapira, P., Youtie, J., & Arora, S. (2012). Early patterns of commercial activity in graphene. Journal of Nanoparticle Research, 14(4), 811.
    Xu, Y., Bai, H., Lu, G., Li, C., & Shi, G. (2008). Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130(18), 5856-5857.
    Yeo, W., Kim, S., Lee, J.-M., & Kang, J. (2014). Aggregative and stochastic model of main path identification: a case study on graphene. Scientometrics, 98(1), 633-655.
    工研院. (2017). 未來趨勢下十大潛力材料.
    吳思華. (2002). 策略九說: 策略思考的本質: 復旦大學出版社.
    林苑卿. (2016). 石墨烯引爆技術革命 商機上兆美元. 財訊雙週刊.

    QR CODE