簡易檢索 / 詳目顯示

研究生: Arjun Niam Jihadi Al Hasan
Arjun Niam Jihadi Al Hasan
論文名稱: 由多環芳香烴合成製作石墨烯的探討與其光學性質分析
Synthesis of Large Polyphenylene as Nanographene Precursors and Its Photoluminescence Properties
指導教授: 林昇佃
Shawn D. Lin
何郡軒
Jinn-Hsuan Ho
口試委員: 王釿鋊
Jin-Guu Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 59
外文關鍵詞: Polyphenylene, Diphenylacetylene
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳材料可因具有不同鍵結結構而有不同的電子傳導性和熱力學穩定性,例如石墨烯、奈米管和石墨烯量子點等,即因其獨特的光電特性而備受關注。本研究探討以有機合成策略開發結構明確的單層石墨烯類材料,詳細分析每個合成反應步驟的重要參數和中間產物的光物理性質。所探討合成奈米石墨烯前驅物的策略為通過鈀催化的 Sonogashira 偶聯、甲矽烷基脫保護、Diels-Alder 環化和環三聚反應,從小分子 4,4'-二溴苯基丙烯酰基逐步合成大分子量的聚合多環芳香烴(C222H150)。
    首先,在Sonogashira 偶聯反應步驟比較不同的反應條件的影響,結果顯示惰性氣體環境及催化劑是重要的反應條件。在 80°C 下連續攪拌 4,4'-二溴苯乙炔、5% Pd(PPh3)2Cl2、10% CuI、3當量的三甲基甲矽烷基乙炔和10% PPh3 的混合物 5 小時,經過管柱層析法獲得純目標產物的產率可達 30%。
    在第二步和第三步反應過程中,依目前的反應參數條件,無需進一步純化即可得到目標產物,產率分別為100 %和87 %。 第四步反應採用10 %八羰基二鈷催化劑,需在高溫下長時間反應(5天)即可生成產物。 產品的純化可藉由先將反或獲得混合物與少量二氧化矽預混合後,再流經層析管柱來完成。目前經過四個反應合成步驟後的C222H150總產率為6.25%,多環芳香烴產品為白色固體。
    以PL光譜分析每個反應步驟的中間產物的光學特性,發現各個合成步驟的產物皆具有藍色發光特徵,溶液形式的激發和發射波長較固體樣品更短,未來可以進一步探討這些中間產物的光物理和光化學分析並應用於太陽能光電有機材料。


    Carbon material has tunable electronic, and thermodynamic stability with varying molecular structure. Graphene, nanotube, and graphene quantum dots are of high interest for applications of their unique optoelectronic properties. In this study, organic synthesis strategy for developping well-defined single layer graphene-like material, the important parameters of each reaction steps and the intermediate products photophysical properties are examined. The step wise synthesis strategy of large polyphenylene (C222H150) as nanographene precursors from small molecule 4,4’-dibromophenylacateylene via palladium-catalyzed Sonogashira coupling, silyl de-protection, Diels-Alder cyclization and cyclotrimerization reaction is carefully studied.
    The first step, Sonogashira coupling reaction were attempted in several reaction conditions which very dependent on inert atmosphere and catalysts. The best isolated yield obtained is 30% as pure product by continuous stirring the mixture of 4,4’-dibromophenylacetylene, 5% Pd(PPh3)2Cl2, 10% CuI, 3 eq trimethylsilylacetylene, 10% PPh3, at 800C in 5 hours. The column chromatography is a mandatory process to get the pure product.
    The second and the third reaction step process, can afford the product without further purification process in high yield (100% and 87% respectively). The fourth step reaction can produce the product using small amount (10%) of dicobaltoctacarbonyl catalyst under high temperature in long time reaction (5 days). The purification of the product can be done using column chromatography by pre-depositing the mixture in a small amount of silica before the column. The total product yield after four-step synthesis is 6.25% with a white solid as polyphenylene product.
    The photoluminescence analysis found that the intermediate product from each reaction steps results in shorter excitation and emission wavelength in solution form. The further photophysical and photochemical analysis of the intermediate products can be explore in the future for the organic material photovoltaics applications.

    ABSTRACT IV ACKNOWLEDGEMENT V LIST OF CONTENTS VI LIST OF FIGURE VIII LIST OF TABLE X CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 1 1.1 CARBON MATERIALS 1 1.2 GRAPHENE 2 1.3 POLYAROMATIC HYDROCARBONS 5 1.4 POLYPHENYLENE 7 1.5 RESEARCH MOTIVATION 8 CHAPTER 2 EXPERIMENTAL SECTION 9 2.1 SYNTHESIS PATHWAY 9 2.1.1 Sonogashira Coupling 9 2.1.2 De-protection of Silyl Group 10 2.1.3 Diels-Alder Reaction 10 2.1.4 Cyclotrimerization 11 2.2 PHOTOLUMINESCENCE ANALYSIS 11 2.3 CHARACTERIZATION 12 2.3.1 TLC (Thin Layer Chromatography) 12 2.3.2 Nuclear Magnetic Resonance (NMR) 12 CHAPTER 3 RESULT AND DISCUSSION 13 3.1 SONOGASHIRA COUPLING 13 3.2 DE-PROTECTION OF SILYL GROUP 27 3.3 DIELS-ALDER REACTION 29 3.4 CYCLOTRIMERIZATION 32 3.5 PHOTOLUMINESCENCE ANALYSIS 36 3.5.1 Visual data of each samples 41 CHAPTER 4 CONCLUSION 43 REFERENCES 45 APPENDIX 52 1H-NMR SPECTRA OF SONOGASHIRA COUPLING PRODUCT 52 13C-NMR SPECTRA OF SONOGASHIRA COUPLING PRODUCT 53 1H-NMR SPECTRA OF DEPROTECTION STEP PRODUCT 54 13C-NMR SPECTRA OF DEPROTECTION STEP PRODUCT 55 1H-NMR SPECTRA OF DIELS-ALDER REACTION 56 13C-NMR SPECTRA OF DIELS-ALDER REACTION 57 1H-NMR OF MIXTURE BETWEEN CYCLOTRIMERIZATION PRODUCT AND DIELS-ALDER PRODUCT 58 13C-NMR OF MIXTURE BETWEEN CYCLOTRIMERIZATION PRODUCT AND DIELS-ALDER PRODUCT 59

    References

    [1] M. Inagaki, F. Kang, M. Toyoda dan H. Konno, Advance Materials Science and Engineering of Carbon, Oxford: Elsevier Inc, 2014.
    [2] X.-Y. Wang, X. Yao dan K. Mullen, “Polycyclic Aromatic Hydrocarbons in the Graphene Era,” Sci China Chem, vol. 62, pp. 1099-1144, 2019.
    [3] P. S. Karthik, A. L. Himaja dan S. P. Singh, “Carbon-allotropes: Synthesis Methods, Applications, and Future Perspective,” Carbon Letters, vol. 15, no. 4, pp. 219-237, 2014.
    [4] B. Pan, J. Xiao, J. Li, P. Liu, C. Wang dan G. Yang, “Carbyne with finite length: The One-Dimensional sp Carbon,” Science Advances, vol. 1, no. 9, p. e1500857, 2015.
    [5] R. R. Tykwinski, “Carbyne: The Molecular Approach,” The Chemical Record, vol. 15, pp. 1060-1074, 2015.
    [6] B. Vedhanarayanan, V. K. Praveen, G. Das dan A. Ajayaghosh, “Hybrid Materials of 1D and 2D Carbon Allotropes and Synthetic π-systems,” NPG Asia Materials, vol. 10, pp. 107-126, 2018.
    [7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva dan A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666-669, 2004.
    [8] K. Mullen, Christopher D. Simpson, J. D. Brand, A. J. Berresheim, L. Pryzbilla dan H. J. Rader, “Synthesis of a Giant 222 Carbon Graphite Sheet,” Chem. Eur. J. 8th Edition No. 6, vol. 8, pp. 1424-1429, 2002.
    [9] M. Li, T. Chen, J. J. Gooding dan J. Liu, “Review of Carbon and Graphene Quantum Dots for Sensing,” ACS Sensors, vol. 4, pp. 1732-1748, 2019.
    [10] M. Bacon, S. J. Bradley dan T. Nann, “Graphene Quantum Dots,” Particle & Particle Systems Characterization, vol. 31, pp. 415-428, 2014.
    [11] S. S. Shams, R. Zhang dan J. Zhu, “Graphene Synthesis: A Review,” Materials Science-Poland, vol. 33, no. 3, pp. 566-578, 2015.
    [12] S. J. Woltornist, A. J. Oyer, J.-M. Y. Carillo, A. V. Dobrynin dan D. H. Adamson, “Conductive Thin Films of Pristine Graphene by Solvent Interface Trapping,” ACS Nano, vol. 7, no. 8, pp. 7062-7066, 2013.
    [13] B. Jayasena dan S. Subbiah, “A Novel Mechanical Cleavage Method for Synthesizing Few-Layer Graphene,” Nanoscale Research Letters, vol. 95, no. 6, 2011.
    [14] K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan dan et al., “Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids,” Nature Materials, vol. 13, pp. 624-630, 2014.
    [15] W. S. Hummers dan R. E. Offeman, “Preparation of Graphitic Oxide,” p. 1339, 1958.
    [16] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger dan G. Comsa, “STM Investigation of Single Layer Graphite Structure Produced on Pt (111) by Hydrocarbon Decomposition,” Surface Science, vol. 264, no. 3, pp. 261-270, 1992.
    [17] H. Ueta, M. Saida, N. Chikara, Y. Yamada, M. Sasaki dan S. Yamamoto, “Highly Oriented Monolayer Graphite Formation on Pt(111) by a Supersonic Methane Beam,” Surface Science, vol. 560, no. 1-3, pp. 183-190, 2004.
    [18] H. I. Rasool, E. B. Song, M. Mecklenburg, B. C. Regan, K. L. Wang, B. H. Weiller dan J. K. Gimzewski, “Atomic-Scale Characterization of Graphene Grown on Copper(100) Single Crystals,” Journal of American Chemical Society, vol. 133, no. 32, pp. 12536-12543, 2011.
    [19] W. Norimatsu dan M. Kusunoki, “Formation Process of Graphene on SiC(0001),” Physica E, vol. 42, pp. 691-694, 2010.
    [20] J. Hass, R. Feng, T. Li, X. Li, Z. Zong, W. A. de Heer, P. N. First, E. H. Conrad, C. A. Jeffrey dan C. Berger, “Highly Ordered Graphene for Two Dimensional Electronics,” Applied Physics Letters, vol. 89, p. 143106, 2006.
    [21] J. Wu, W. Pisula dan K. Mullen, “Graphene as Potential Material for Electronics,” Chemical Reviews, vol. 107, no. 3, pp. 718-747, 2007.
    [22] A. J. Heeger, “Noble Lecture: Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials,” Review of Modern Physics, vol. 73, no. 3, pp. 681-700, 2001.
    [23] H. Shirakawa, “The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture),” Angewandte Chemie International Edition, vol. 40, no. 14, pp. 2574-2580, 2001.
    [24] E. Clar, C. T. Ironside dan M. Zander, “Hexabenzenecoronene,” Proc. Chem. Soc., p. 150, 1958.
    [25] Manzetti, Sergio;, Handbook of Polycyclic Aromatic Hydrocarbons: Chemistry, Occurence and Health Issues, Nova Science Publisher, Inc., 2012.
    [26] X. Feng, W. Pisula, T. Kudernac, D. Wu, L. Zhi, S. D. Feyter dan K. Mullen, “Controlled Self-Assembly of C3-Symmetric Hexa-peri-hexabenzocoronenes with Alternating Hydrophilic and Hydrophobic Substituents in Solution, in the Bulk, and on a Surface,” Journal of American Chemical Society, vol. 131, no. 12, pp. 4439-4448, 2009.
    [27] R. E. Bauer, A. C. Grimsdale dan K. Mullen, “Functionalized Polyphenylene Dendrimers and Their Application,” Top Curr Chem, vol. 245, pp. 253-286, 2005.
    [28] X. Feng, W. Pisula dan K. Mullen, “Large Polycyclic Aromatic Hydrocarbons : Synthesis and Discotic Organization,” Pure Appl Chem, vol. 81, no. 12, pp. 2203-2224, 2009.
    [29] C. Li, M. Liu, N. G. Pschirer, M. Baumgarten dan K. Mullen, “Polyphenylene-Based Materials for Organic Photovoltaics,” Chem. Rev, vol. 110, no. 11, pp. 6817-6855, 2010.
    [30] X. Shen, D. M. Ho dan R. A. Pascal, Jr., “Synthesis of Polyphenylene Dendrimers Related to "Cubic Graphite",” J.Am.Chem.Soc, vol. 126, pp. 5798-5805, 2004.
    [31] U.-M. Wiesler, T. Weil dan K. Mullen, “Nanosized Polyphenylene Dendrimers,” dalam Topics in Current Chemistry, New York, Springer, 2001, pp. 1-40.
    [32] Y. Gu, Z. Qiu dan K. Mullen, “Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science,” J. Am. Chem. Soc, vol. 144, pp. 11499-11524, 2022.
    [33] L. Przybilla, J. D. Brand, K. Yoshimura, H. J. Rader dan K. Mullen, “MALDI-TOF Mass Spectrometry of Insoluble Giant Polycyclic Aromatic Hydrocarbons by a New Method of Sample Preparation,” Analytical Chemistry, vol. 72, no. 19, pp. 4591-4597, 2000.
    [34] A. Rouhanipour, M. Roy, X. Feng, H. J. Rader dan K. Mullen, “Subliming the Unsublimable: How to Deposit Nanographenes,” Angewandte Chemie Intl. Ed., vol. 48, pp. 4602-4604, 2009.
    [35] J. A. Christensen dan J. T. Fletcher, “2-(1,2,3-Triazol-4-yl)pyridine-containing Ethynylarenes as Selective 'Turn-on' Fluorescent Chemosensors for Ni(II),” Tetrahedron Letters, vol. 55, pp. 4612-4615, 2014.
    [36] R. M. Silverstein, F. X. Webster dan D. J. Kiemle, Spectrometric Idenrification of Organic Compounds, New York: John Wiley & Sons, Inc., 2005.
    [37] V. P. Bohm dan W. A. Herrmann, “A Copper-Free Procedure for the Palladium-Catalyzed Sonogashira Reaction of Aryl Bromides with Terminal Alkynes at Room Temperature,” Eur. J. Org. Chem, pp. 3679-3681, 2000.
    [38] Y. He dan C. Cai, “Heterogeneous Copper-Free Sonogashira Coupling Reaction Catalyzed by A Reusable Palladium Schiff Base Complex in Water,” Journal of Organometallic Chemistry, vol. 696, pp. 2689-2692, 2011.
    [39] K. Sonogashira, “Development of Pd-Cu Catalyzed Cross-Coupling of Terminal Acetylenes with sp2-Carbon Halides,” Journal of Organometallic Chemistry, vol. 653, pp. 46-49, 2002.
    [40] N. E. Leadbeater dan B. J. Tominack, “Rapid, Easy Copper-Free Sonogashira Couplings using Aryl Iodides and Activated Aryl Bromines,” Tetrahedron Letters, vol. 44, pp. 8653-8656, 2003.
    [41] S. Thorand dan N. Krause, “Improved Procedures for Palladium-Catalyzed Coupling of Terminal Alkynes with Aryl Bromides,” J. Org. Chem, vol. 63, pp. 8551-8553, 1998.
    [42] B. S. Furniss, A. J. Hannaford, P. W. Smith dan A. R. Tatchell, Vogel's Textbook of Practical Organic Chemistry 5th Edition, Essex: Longman Scientific & Technical, 1989.
    [43] J. D. Ricker dan L. M. Geary, “Recent Advances in the Pauson-Khand Reaction,” Top Catal, vol. 60, pp. 609-619, 2017.
    [44] M. Kramer, U. H. Bunz dan A. Dreuw, “Comprehensive Look at the Photochemistry of Tolane,” Journal of Physical Chemistry A, vol. 121, pp. 946-953, 2017.
    [45] M. Wierzbicka, I. Bylinska, C. Czaplewski dan W. Wiczk, “Experimental and Theoretical Studies of The Spectroscopic Properties of Simple Symmetrically Subtituted Diphenylacetylene Derivatives,” RSC Advances, vol. 5, pp. 29294-29303, 2015.
    [46] M. N. Ashfold, G. A. King, D. Murdock, M. G. Nix, T. A. Oliver dan A. G. Sage, “phisigma* Excited State in Molecular Photochemistry,” Physical Chemistry Chemical Physics, vol. 12, pp. 1218-1238, 2010.
    [47] J. Saltiel dan V. R. Kumar, “Photophysics of Diphenylacetylene: Light from the "Dark State",” Journal of Physical Chemistry A, vol. 116, pp. 10548-10558, 2012.
    [48] J. Tong, Y. J. Wang, Z. Wang, J. Z. Sun dan B. Z. Tang, “Crystallization-Induced Emission Enhancement of a Simple Tolane-Based Mesogenic Luminogen,” J. Phys. Chem. C, vol. 119, pp. 21875 - 21881, 2015.
    [49] M. J. Allen, V. C. Tung dan R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chemical Reviews, vol. 110, no. 1, pp. 132-145, 2010.
    [50] L. Huang, B. Wu, G. Yu dan Y. Liu, “Graphene: Learning from Carbon Nanotubes,” Journals of Materials Chemistry, vol. 21, no. 4, pp. 919-929, 2011.
    [51] P. Sutter, “How Silicon Leaves the Scene,” Nature Materials, vol. 8, pp. 171-172, 2009.
    [52] R. Chinchilla dan C. Najera, “The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry,” Chemical Reviews, vol. 107, no. 3, pp. 874-922, 2007.
    [53] M. J. Bosiak, “A Convenient Synthesis of 2-Arylbenzo[b]furans from Aryl Halides and 2-Halophenols by Catalytic One-Pot Cascade Method,” ACS Catalysis, vol. 6, pp. 2429-2434, 2016.
    [54] J. Yu, K. Xiao, W. Xue, Y.-x. Shen, J. Tan, S. Liang, Y. Wang dan X. Huang, “Excitation-Emission Matrix (EEM) Fluorescence Spectroscopy for Characterization of Organic Matter in Membrane Bioreactor: Principles, Methods and Applications,” Front.Environ.Sci.Eng, vol. 14, no. 2, p. 31, 2020.
    [55] Y. Hirata, “Photophysical and Photochemical Primary Process of Diphenylacetylene Derivatives and Related Compounds in Liquid Phase,” Bull. Chem. Soc. Jpn, vol. 72, no. 8, pp. 1647-1664, 1999.
    [56] Y. Zang, B. Li, H. Li dan Y. Yang, “Light Emission Properties and Self-Assembly of a Tolane-based Luminogen,” RSC Advances, vol. 5, pp. 38690-38695, 2015.

    QR CODE