簡易檢索 / 詳目顯示

研究生: 林昕又
Xin-You Lin
論文名稱: 利用 DSP 實現滑動模式控制器於三相無刷直流馬達之應用
Implementation of Three Phase Brushless DC Motor by using Sliding Mode Controller for Application based on DSP
指導教授: 張以全
I-Tsyuen Chang
口試委員: 張以全
I-Tsyuen Chang
劉孟昆
Meng-Kun Liu
藍振洋
Chen-Yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 無刷直流馬達阻尼參數識別滑動模式控制器比例積分控制器反電動勢偵測
外文關鍵詞: brushless DC motor, Identify damping parameters, Sliding mode controller, PI controller, Back EMF detection
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以三相無刷直流馬達為研究對象,首先介紹永磁式無刷直流馬達的結構與特性,再識別馬達內兩種參數,並利用變動轉速進行阻尼係數之估測,接著利用六步方波驅動(Six-Step Square Wave)和脈衝寬度調變(PWM, Pluse Width Modulation)控制方法驅動馬達,其中換相點分別使用霍爾感測元件和無感測元件換相模式。本論文實現高階控制之滑動模式控制器(SMC, Sliding Mode Controller)和傳統比例積分控制器(PID, Proportional Integral Derivative)進行轉速控制。研究首先進行 MATLAB/Simulink 軟體模擬,以此依據透過DSP單晶片於三相無刷直流馬達系統實現,並比較模擬與實驗之差異。此馬達系統包含三相變頻器、滑動模式控制器、脈衝寬度調變產生器、馬達轉子轉速估測器等,配合本研究開發之反電動勢換相偵測及 SMC 達到馬達轉速閉迴路控制,由結果顯示,本文所提出之控制方法對於無刷直流馬達的控制有優良的表現。


Three Phase BLDC (Brushless Direct-current Motor) is the major research object in this thesis. First, the structure and characteristics of Permanent-Magnet BLDC were introduced. Second, the motor characteristic parameters are identified, the damping coefficient is estimated by the variable speed. Third, the Six Steps Square Wave method and PWM (Pulse Width Modulation) was applied to drive and control the motor while using Hall sensor or sensorless commutating technique at Commutation point.
The main purpose is to control rotating speed of BLDC by advanced SMC (Sliding Mode Controller) and traditional PID (Proportional Integral Derivative). After simulating with MATLAB/Simulink, the Three Phase BLDC system which includes Three-phase inverter, PWM generator and motor rotor speed estimator was able to achieve closed-loop control by utilizing DSP (Digital Signal Processing) single chip.
As the results validated, the method proposed in this thesis to control BLDC is capable of accomplish exceptional performances.

論文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII 符號說明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV 1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 反電動勢換相偵測三相電壓元件驅動方法 . . . . . . . . . . 3 1.3.2 馬達參數識別 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3 控制器設計方法 . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 無刷直流馬達介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 有刷直流馬達和無刷直流馬達之結構與差異 . . . . . . . . . . 9 2.1.2 數學模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.3座標轉換 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.4 阻尼係數估算 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 無刷直流馬達驅動原理 . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 六步方波驅動原理 . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 脈衝寬度調變 . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.3 霍爾感測器偵測法 . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.4 反電動勢偵測法 . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 控制器設計之模擬架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1 系統模擬架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 脈衝寬度調變實現 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 正反轉設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 速度控制與電流保護 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 阻尼係數估測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.6 轉速閉迴路控制器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.1 比例積分控制器 . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.2 滑動模式控制器. . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 系統架構及實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1 系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 無刷直流馬達規格介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 數位訊號處理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 程式設計規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.5 估測馬達轉子轉速 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.6 實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.6.1 控制器之響應 . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 結論與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

[1] B. Schweber, “Stepper motors make the right moves with precision, ease and
smarter drivers.” http://www.mouser.tw/publicrelations_techarticle_
steppermotors_rightmoves_2015final/, 2015.
[2] B. K. Bose, Modern Power Electronics and Ac Drives. Prentice Hall, 2002.
[3] “Dewalt unveils their brushless (bl) motor technology.” http://www.tool-talker.com/
news/dewalt-unveils-their-brushless-bl-motor-technology, May 10 2012.
[4] 林素琴, “直流無刷馬達市場及潛力產品介紹,” 先進馬達與驅動技術專輯,
pp. 9–11.
[5] N. Ertugrul and P. Acarnley, “High performance nonsalient sensorless bldc motor
control strategy from standstill to high speed high performance nonsalient sensorless
bldc motor control strategy from standstill to high speed,” IEEE Transactions on
Industry Applications, vol. 30, no. 1, 1994.
[6] T. W. H.J. Guo, S. Sagawa and O. Ichinokura, “Sensorless driving method of
permanent-magnet synchronous motors based on neural networks,” IEEE Transactions
on Magnetics, vol. 39, no. 5, pp. 3247–3249, 2003.
[7] R. Consoli, S. Musumeci and A. Testa, “Sensorless vector and speed control of brushless
motor drives,” IEEE Transactions on Industrial Electronics, vol. 41, no. 1, 1994.
[8] T. Kim and M. Ehsani, “Sensorless control of the bldc motors from near-zero to high
speeds,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1635–1645,
2004.
[9] T. Kim and J. Lyou, “Commutation instant detector for sensorless drive of bldc motor,”
Electronics Letters, vol. 47, no. 23, 2011.
[10] C. P. X.X. Zhou, X. Chen and Y. Zhou, “High performance nonsalient sensorless
bldc motor control strategy from standstill to high speed,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4365–4375, 2018.
[11] C. V. Jones, The unified theory of electrical machines. London : Butterworths, 1967.
[12] C. Delecluse and D. Grenier, “A measurement method of the exact variations of the
self and mutual inductances of a buried permanent magnet synchronous motor and its
application to the reduction of torque ripples,” International Workshop on Advanced
Motion Control, pp. 191–197, 1998.
[13] S. Wang and S. Lin, “Inductances and resistance measurement of a permanent magnet
synchronous motor,” Fifth World Congress on Intelligent Control and Automation,
pp. 4391–4395, 2004.
[14] 趙清風, 控制之系統鑑. 全華科技圖書, 2 2001.
[15] P. Ioannou and J. Sun, Robust Adaptive Control. New Jersey: Prentice-Hall, 1996.
[16] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: A survey,” IEEE
transactions on industrial electronics, vol. 40, no. 1, pp. 2–22, 1993.
[17] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding mode control and observation,
vol. 10. Springer, 2014.
[18] F. D. F. Diouf, F. Leferink and M. Bensetti, “Wideband impedance measurements and
modeling of dc motors for emi predictions,” IEEE Transactions on Electromagnetic
Compatibility, vol. 57, no. 2, pp. 180–187, 2015.
[19] I. Eker, “Sliding mode control with pid sliding surface and experimental application
to an electromechanical plant,” ISA transactions, vol. 45, no. 1, pp. 109–118, 2006.
[20] C. U. Maheswararao, Y. K. Babu, and K. Amaresh, “Sliding mode speed control of
a dc motor,” in International Conference on Communication Systems and Network
Technologies (CSNT), pp. 387–391, IEEE, 2011.
[21] P.Sowjanya and D. S.Tarakalyani, “Pi and sliding mode control for permanent magnet
brushless dc motor,” International Journal of Innovative Technology and Research,
vol. 1, no. 5, pp. 497–502, 2013.
[22] N. P. Galphade and S. S. Sankeshwari, “Simulation of bldc motor control using
sliding mode control technique,” International Journal of Advances in Engineering
& Technology, vol. 7, no. 6, p. 1857, 2015.
[23] S. D. Z. Chen, M. Tomita and S. Okuma, “New adaptive sliding observers for
position- and velocity-sensorless controls of brushless dc motors,” IEEE Transactions
on Industrial Electronics, vol. 47, no. 3, 2000.
[24]王朝興, “節能與直流無刷馬達驅動效率,” 研究與創新, no. 2, pp. 20–22, 2007.
[25] 五金會, “碳刷分類說明.”
[26] 張鈺炯, “外轉子直流無刷馬達應用案例,” 冷凍空調與能源科技雜誌, no. 98,
pp. 21–31, 2016.
[27] W. Chlebosz, G. Ombach, and J. Junak, “Comparison of permanent magnet brushless
motor with outer and inner rotor used in e-bike,” in Electrical Machines (ICEM),
2010 XIX International Conference on, pp. 1–5, IEEE, 2010.
[28] K. Yamazaki, M. Shina, Y. Kanou, M. Miwa, and J. Hagiwara, “Effect of eddy
current loss reduction by segmentation of magnets in synchronous motors: Difference
between interior and surface types,” IEEE Transactions on Magnetics, vol. 45,
no. 10, pp. 4756–4759, 2009.
[29] Y. Kiran and P. Puttaswamy, “Field oriented control of a permanent magnet synchronous
motor using a dsp,” International Journal of Advanced Research in Electrical
Electronics and Instrumentation Engineering, vol. 3, no. 10, pp. 12364–12378,
2014.
[30] 林廷岳, “三相直流無刷馬達使用多階滑模控制器於干擾抑制研究,” 碩士論文,
國立台灣科技大學機械工程學系, 2017 年1 月.
[31] 曾逸敦, “無刷與有刷直流馬達簡易比較圖.” http://eatontseng.pixnet.
net/blog/post/102290242-%E7%AC%AC%E5%8D%81%E7%AB%A0%EF%BC%9A%E9%
A6%AC%E9%81%94, Dec 2013.
[32] N. Nise, Control Systems Engineering. Wiley, 2010.
[33] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric
machinery and drive systems, vol. 75. John Wiley & Sons, 2013.
[34] G. Cai, K. Qian, B. Li, and X. Pang, “Robust pid controller in brushless dc motor
application,” in Control and Automation, 2007. ICCA 2007. IEEE International
Conference on, pp. 879–882, IEEE, 2007.
[35] B. K. Bose, “Power electronics and ac drives, prentice hall,” NJ, 1986.
[36] B.K.Bose, “Power electronics and variable frequency drives,” IEEE press, New
IEEE press, New York, 1997.
[37] P. C. Krause, Analysis of Electric Machinery. McGraw Hill, 1986.
[38] R.H.Park, “Two-reaction theory of synchronous machines-￿,” Transactions of
American Institute of Electrical Engineers, vol. 52, 1933.
[39] O. W. P. C. Krause and S. D. Sudhoff, “Analysis of electric machinery and drive
systems,” Wiley-Interscience, 2002.
[40] R. Hosen and K. M. Salim, “Design implementation and testing of a three phase
bldc motor controller,” in Advances in Electrical Engineering (ICAEE), 2013 International
Conference on, pp. 192–196, IEEE, 2013.
[41] A. Simpkins and E. Todorov, “Position estimation and control of compact bldc motors
based on analog linear hall effect sensors,” in American Control Conference
(ACC), 2010, pp. 1948–1955, IEEE, 2010.
[42] 維基百科, “霍爾效應— 維基百科自由的百科全書” https:
//zh.wikipedia.org/w/index.php?title=%E9%9C%8D%E7%88%BE%E6%95%
88%E6%87%89&oldid=41887748, 2016.
[43] P. Yedamale, “Brushless dc (bldc) motor fundamentals,” Microchip Technology Inc,
vol. 20, pp. 3–15, 2003.
[44] P. P. Acarnley and J. F. Watson, “Review of position-sensorless operation of brushless
permanent-magnet machines,” IEEE Transactions on Industrial Electronics, vol. 53,
no. 2, pp. 352–362, 2006.
[45] M.-F. Tsai, T. P. Quy, B.-F. Wu, and C.-S. Tseng, “Model construction and verification
of a bldc motor using matlab/simulink and fpga control,” in Industrial Electronics
and Applications (ICIEA), 2011 6th IEEE Conference on, pp. 1797–1802, IEEE,
2011.
[46] M. Kia, K. R. Rezayieh, and R. Taherkhani, “A novel method for measuring rotational
speed of bldc motors using voltage feedback,” in Control, Instrumentation
and Automation (ICCIA), 2011 2nd International Conference on, pp. 791–794, IEEE,
2011.
[47] P. Sowjanya and S. Tarakalyani, “Pi and sliding mode control for permanent magnet
brushless dc motor,” IJITR, vol. 1, no. 5, pp. 497–502, 2013.

無法下載圖示 全文公開日期 2024/08/27 (校內網路)
全文公開日期 2024/08/27 (校外網路)
全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE