簡易檢索 / 詳目顯示

研究生: 趙祈淯
Chi-Yu Chao
論文名稱: 結合代數推理鷹架之運算思維模式辨識技能行動教育遊戲的設計與評估
Design and Evaluation of a Mobile Educational Game Combining Algebraic Reasoning Scaffolding for Training Pattern Recognition Skill of Computational Thinking
指導教授: 侯惠澤
Huei-Tse Hou
口試委員: 陳聖智
Sheng-Chih Chen
湯梓辰
Joni-Tzuchen Tang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 運算思維模式辨識行動教育遊戲代數推理鷹架
外文關鍵詞: Computational Thinking, Pattern Recognition, Mobile Educational Game, Algebraic Reasoning, Scaffolding
相關次數: 點閱:421下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運算思維係指運用電腦科學運作的概念,來形塑並解決生活中問題,在STEM 跨領域整合學習中更扮演學科間橋梁的角色。雖然電腦編碼雖然可以做為運算思維的學習框架,但學習者亦應透過其他形式的教學活動,來培養運算思維的底層概念,更靈活地去應用問題解決的技能。
    模式辨識是運算思維中的一項重要基礎技能,因此本研究透過數學代數推理結合模式辨識,開發一款破解密碼方程式的行動教育遊戲《Guess My Rule》,並招募60 位20 歲以上的成人參與此研究,其中實驗組、控制組各30 位,以比較有無代數推理鷹架提示的受試者,在《Guess My Rule》遊戲活動的心流、活動焦慮、動機表現,並針對受試者在遊戲中的行為模式進行分析及比較。研究結果顯示,兩組的受試者在《Guess My Rule》遊戲中有良好的心流狀態及動機,且在無聊及焦慮中取得平衡。另一方面,加入代數推理鷹架的實驗組,在心流子維度知行合一,雖高於量表中位數但和量表中位數無呈現顯著關係,而在清楚的回饋向度則略低於控制組,推測學習者可能會因為使用代數推理鷹架提示,獲得的資訊增多,在心流子向度部分受到些微影響。除此之外,研究結果顯示,實驗組遊戲成就和代數推理鷹架的使用次數具顯著負相關,顯示學習成就越低的學習者,鷹架使用次數越高;遊戲成就和心流具顯著正相關,可推測代數推理鷹架的加入,有潛力使得遊戲成就和心理狀態產生關聯。另外,加入代數推理鷹架後,焦慮對心流的影響變得不顯著,推測代數推理鷹架加入,有機會緩解學習者因為焦慮而影響投入的情況。本研究亦針對受試者的遊戲行為進行分析,結果顯示,受試者在遊戲中的答題行為具一定模式,且在提示使用上具有偏好,並會連續使用提示鷹架。


    Computational thinking refers to the use of computer science concepts to solve
    problems in life. In recent years, computational thinking has become even more
    important because of the emphasis on problem solving in STEM cross-curricular
    learning. Although coding can be used as a framework for learning computational
    thinking, learners should also develop computational thinking concepts through other
    types of teaching activities, so that they can apply problem-solving skills more flexibly.
    Pattern recognition is one of the important skills in computational thinking.
    Therefore, in this study, a mobile educational game "Guess My Rule" was developed.
    It combined algebraic reasoning with pattern recognition in the code equation-solving
    scenario. 60 adults above age 20 were recruited to participate in this study, divided into 30 participants in the experimental group and 30 in the control group. The study was conducted to compare the flow, activity anxiety, motivation, and behavioral patterns of the participants in the "Guess My Rule" game with and without the algebraic reasoning scaffolding hints. The results of the study showed that the participants in both groups had favorable flow and motivation in this game, and achieved a balance between boredom and anxiety. Furthermore, the flow sub-dimension “action-awareness merging” in the experimental group was above the median but not significantly related to the median. Also, the flow sub-dimension “unambiguous feedback” in the experiment group was slightly lower than in the control group. Additionally, the results showed that game achievement has a correlation with the frequency of uses of scaffolding and the flow, indicating that the lower the academic achievement, the higher the frequency of uses of the algebraic reasoning scaffolding and it can be hypothesized that the addition of the algebraic reasoning scaffolding has the potential to associate game achievement with mental status. In addition, the activity anxiety has become less correlated with the flow with the addition of the algebraic reasoning scaffolding, and it was hypothesized that the addition of the algebraic reasoning scaffolding had the potential to mitigate the impact of anxiety on the engagement of learners. This study also analyzed the game behaviors of the participants, and the results showed that the participants had a certain pattern in question-answering, and they had a preference for the use of hints and would use the hint scaffolding continuously.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第壹章 緒論 第一節 研究背景與動機 第二節 研究目的與研究問題 第貳章 文獻探討 第一節 運算思維 第二節 模式辨識 第三節 代數思維及代數推理 第四節 遊戲式學習運用於運算思維教學 第五節 鷹架 第六節 小結 第參章 研究方法 第一節 研究設計 第二節 研究對象 第三節 研究工具 第四節 研究流程 第肆章 研究結果 第一節 遊戲成就評估 第二節 心流狀態評估 第三節 活動焦慮評估 第四節 動機評估 第五節 相關與迴歸分析 第六節 遊戲行為分析結果 第七節 遊戲體驗與學習經驗之質性分析 第伍章 討論 第一節 學習者在「無代數推理鷹架」與「具備代數推理鷹架」的《Guess My Rule》學習活動中的心流狀態、動機模式、活動焦慮的差異與關聯 為何? 第二節 學習者在《Guess My Rule》中的遊戲體驗狀況為何? 第三節《Guess My Rule》中「無代數推理鷹架」與「具備代數推理鷹架」 組別,學習者的行為模式為何? 第陸章 結論與建議 第一節 結論 第二節 研究限制與建議 參考文獻 附錄一、ARCS 動機量表

    吳乃芸。「以海霸桌遊實現實體互動之運算思維課程」。碩士論文,國立成功大
    學工程科學系碩士在職專班,2022。https://hdl.handle.net/11296/fw34af。
    林巧玲(2021)。六年級代數推理解題表現之研究。國立臺中教育大學數學教育
    學系在職專班碩士論文,台中市。 取自
    https://hdl.handle.net/11296/h6ye49
    洪美雪(2001)。字幕對外語學習成效影響之探究。國立成功大學教育研究所碩
    士論文,台南市。 取自https://hdl.handle.net/11296/sx7ca2
    孫嘉黛(2020)。運算思維融入高中公民探究與實作課程之行動研究。國立臺灣師
    範大學課程與教學研究所碩士論文, 台北市。 取自
    https://hdl.handle.net/11296/qjhrpj
    Abdullah, A. H., Othman, M. A., Ismail, N., Rahman, S. N. S. A., Mokhtar, M., &
    Zaid, N. M. (2019, December 1). Development of Mobile Application for The
    Concept of Pattern Recognition in Computational Thinking for Mathematics
    Subject. IEEE Xplore. https://doi.org/10.1109/TALE48000.2019.9225910
    Adamuz-Povedano, N., Fernández-Ahumada, E., García-Pérez, M. T., & Montejo-
    Gámez, J. (2021). Developing Number Sense: An Approach to Initiate
    Algebraic Thinking in Primary Education. Mathematics, 9(5), 518.
    https://doi.org/10.3390/math9050518
    Agbo, F. J., Oyelere, S. S., Suhonen, J., & Laine, T. H. (2021). Co-design of mini
    games for learning computational thinking in an online
    environment. Education and Information Technologies.
    https://doi.org/10.1007/s10639-021-10515-1
    Aho, A. V. (2012). Computation and Computational Thinking. The Computer
    Journal, 55(7), 832–835. https://doi.org/10.1093/comjnl/bxs074
    Almeda, Ma. V., & Asbell-Clarke, J. (2021). Scaffolding Executive Function in
    Game-Based Learning to Improve Productive Persistence and Computational
    Thinking in Neurodiverse Learners. HCI in Games: Serious and Immersive
    Games, 155–172. https://doi.org/10.1007/978-3-030-77414-1_12
    Angeli, C., & Giannakos, M. (2019). Computational thinking education: Issues and
    challenges. Computers in Human Behavior, 106185. https://doi.org/10.1016/j.
    chb.2019.106185
    Australian Curriculum, Assessment, Reporting Authority (ACARA). (2013). Draft
    Australian curriculum technologies. Retrieved from
    http://consultation.australiancurriculum.edu.au/Static/docs/Technologies
    /Draft%20Australian%20Curriculum%20Technologies%20-
    72
    %20February%202013.pdf
    Australian Education Council (2015) National STEM School Education Strategy
    2016–2026. Available
    at: http://www.scseec.edu.au/site/DefaultSite/filesystem/
    documents/National%20STEM%20School%20Education%20Strategy.pdf.
    Azevedo, R., & Cromley, J. G. (2004). Does Training on Self-Regulated Learning
    Facilitate Students' Learning With Hypermedia? Journal of Educational
    Psychology, 96(3), 523–535. https://doi.org/10.1037/0022-0663.96.3.523
    Azevedo, R., & Hadwin, A. F. (2005). Scaffolding self-regulated learning and
    metacognition – Implications for the design of computer-based
    scaffolds. Instructional Science, 33(5/6), 367–379. https://www.jstor.org/
    stable/41953688
    Basawapatna, A., Repenning, A., & Savignano, M. (2019). The Zones of Proximal
    Flow Tutorial. Proceedings of the 50th ACM Technical Symposium on
    Computer Science Education. https://doi.org/10.1145/3287324.3287361
    Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive
    scaffolding in a Computational Thinking-based science learning
    environment. User Modeling and User-Adapted Interaction, 27(1), 5–53.
    https://doi.org/10.1007/s11257-017-9187-0
    Barrón-Estrada, M. L., Zatarain-Cabada, R., Romero-Polo, J. A., & Monroy, J. N.
    (2021). Patrony: A mobile application for pattern recognition
    learning. Education and Information Technologies, 27(1), 1237–1260.
    https://doi.org/10.1007/s10639-021-10636-7
    Bell, T., & Vahrenhold, J. (2018). CS Unplugged—How Is It Used, and Does It
    Work? Progress in Pattern Recognition, Image Analysis, Computer Vision,
    and Applications, 497–521. https://doi.org/10.1007/978-3-319-98355-4_29
    Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational
    thinking and tinkering: Exploration of an early childhood robotics
    curriculum. Computers & Education, 72, 145–157.
    https://doi.org/10.1016/j.compedu.2013.10.020
    Boaler, J., & Selling, S. K. (2017). Psychological Imprisonment or Intellectual
    Freedom? A Longitudinal Study of Contrasting School Mathematics
    Approaches and Their Impacton Adults' Lives. Journal for Research in
    Mathematics Education, 48(1), 78-105.
    https://doi.org/10.5951/jresematheduc.48.1.0078
    Boyer, K., Buffum, P. S., Culbertson, K., Frankosky, M., Lester, J., Martinez-Arocho,
    A., Min, W., Mott, B., Rodriguez, F., & Wiebe, E. (2015). ENGAGE:A gamebased
    learning environment for middle school computational
    thinking. Proceedings of the 46th ACM Technical Symposium on Computer
    Science Education. https://doi.org/10.1145/2676723.2691876
    Bråting, K., & Kilhamn, C. (2020). Exploring the intersection of algebraic and
    computational thinking. Mathematical Thinking and Learning, 1–16.
    https://doi.org/10.1080/10986065.2020.1779012
    Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies,
    G. (2017). Changing a generation’s way of thinking: Teaching computational
    thinking through programming. Review of Educational Research, 87(4), 834-
    860. https://doi.org/10.3102/0034654317710096
    Bybee, R. W. (2013). The case for STEM education : challenges and opportunities.
    National Science Teachers Association.
    Cai, J., Lew, H. C., Morris, A., Moyer, J. C., Fong Ng, S., & Schmittau, J. (2005). The
    development of studients’ algebraic thinking in earlier grades: Zentralblatt Für
    Didaktik Der Mathematik, 37(1), 5–15. https://doi.org/10.1007/bf02655892
    Cai, Z., Mao, P., Wang, D., He, J., Chen, X., & Fan, X. (2022). Effects of Scaffolding
    in Digital Game-Based Learning on Student’s Achievement: a Three-Level
    Meta-analysis. Educational Psychology Review. https://doi.org/10.1007/
    s10648-021-09655-0
    Chan, S.-W., Looi, C.-K., Ho, W. K., Huang, W., Seow, P., & Wu, L. (2021). Learning
    number patterns through computational thinking activities: A Rasch model
    analysis. Heliyon, 7(9), e07922. https://doi.org/10.1016/j.heliyon.2021.e07922
    Chang, C.-K. (2014). Effects of Using Alice and Scratch in an Introductory
    Programming Course for Corrective Instruction. Journal of Educational
    Computing Research, 51(2), 185–204. https://doi.org/10.2190/ec.51.2.c
    Chen, Y.-C., Hou, H.-T., & Wu, C.-H. (2022). Design and Development of a
    Scaffolding-Based Mindtool for Gamified Learning Classrooms. Journal of
    Educational Computing Research, https://doi.org/10.1177/07356331 221101081
    Choi, J., Lee, Y., & Lee, E. (2016). Puzzle Based Algorithm Learning for Cultivating
    Computational Thinking. Wireless Personal Communications, 93(1), 131–145.
    https://doi.org/10.1007/s11277-016-3679-9
    Chow, S. J., & Yong, B. C. S. (2013). Secondary school students’ motivation and
    achievement in combined science. US China Education Review B, 3(4), 213–
    228.
    Chou, Y.-S., Hou, H.-T., Chang, K.-E., & Su, C.-L. (2021). Designing cognitive-based
    game mechanisms for mobile educational games to promote cognitive thinking:
    an analysis of flow state and game-based learning behavioral
    patterns. Interactive Learning Environments, 1–18.
    https://doi.org/10.1080/10494820.2021.1926287
    Coleman, T. E., & Money, A. G. (2019). Student-centred digital game–based learning:
    a conceptual framework and survey of the state of the art. Higher Education.
    https://doi.org/10.1007/s10734-019-00417-0
    Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. Design
    Issues, 8(1), 80. https://doi.org/10.2307/1511458
    CSTA (2011). CSTA K–12 computer science standards. The ACM K-12 Education
    Task Force. Retrieved from http://www.csta.acm.org/Curriculum/sub/CurrFiles/
    CSTA_K-12_CSS.pdf
    Cuny, J., Snyder, L., & Wing, J.M. (2010). Demystifying computational thinking for
    non-computer scientists. Unpublished manuscript in progress, referenced in
    http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pd
    Delal, H., & Oner, D. (2020). Developing middle school students’ computational
    thinking skills using unplugged computing activities. Informatics in Education,
    19(1), 1-13. https://doi.org/10.15388/infedu.2020.01
    DeOrsey, P., Pooler, C., & Ferrara, M. (2021). Mathematical Zendo: A game of
    patterns and logic. Journal of Math Circles, 2(1).
    https://digitalcommons.cwu.edu/ mathcirclesjournal/vol2/iss1/2/
    Department for Education in England (DOEE) (2013, September 11). National
    curriculum in England: Computing programmes of study. Retrieved from
    https://www.gov.uk/government/publications/national-curriculum-inenglandcomputing-
    programmes-of-study/national-curriculum-in-englandcomputingprogrammes-
    of-study
    Druckman, D. (1995). The educational effectiveness of interactive games. In D.
    Crookall, & K. Arai (Eds.), Simulation and gaming across disciplines and
    cultures: ISAGA at a watershed (pp. 178-187). SAGE Publications.
    Eisner, E. W., & Elliot, A. (1982). Cognition and Curriculum. Addison-Wesley
    Longman Limited.
    Eskelinen, M. (2001). The gaming situation. Game studies, 1(1), 68.
    http://gamestudies.org/0101/eskelinen/
    European Commission. (2014). Digital Agenda for Europe. Retrieved from
    https://ec.europa.eu/digital-agenda/en/grand-coalition-digital-jobs.
    Eysenck, M. W., & Keane, M. T. (2015). Cognitive Psychology. Psychology Press.
    https://doi.org/10.4324/9781315778006
    Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2020). Computational
    thinking in programming with Scratch in primary schools: A systematic
    review. Computer Applications in Engineering Education, 29(1).
    https://doi.org/10.1002/cae.22255
    Fernandez, M. L., & Anhalt, C. O. (2001). Transition Toward Algebra. Mathematics
    Teaching in the Middle School, 7(4), 236–241.
    https://doi.org/10.5951/mtms.7.4.0236
    Fisch, S. M. (2005). Making educational computer games “educational.” Proceeding
    of the 2005 Conference on Interaction Design and Children - IDC ’05.
    https://doi.org/10.1145/1109540.1109548
    Francisco, J. M., & Hähkiöniemi, M. (2011). STUDENTS’ WAYS OF REASONING
    ABOUT NONLINEAR FUNCTIONS IN GUESS-MY-RULE
    GAMES. International Journal of Science and Mathematics Education, 10(5),
    1001–1021. https://doi.org/10.1007/s10763-011-9310-3
    Fu, K.-S. (1982). Pattern recognition for automatic visual inspection. Robot
    Vision. https://doi.org/10.1117/12.933606
    Gadanidis, G., Cendros, R., Floyd, L., & Namukasa, I. (2017). Computational
    Thinking in Mathematics Teacher Education. Contemporary Issues in
    Technology and Teacher Education, 17(4), 458–477.
    https://www.learntechlib.org/p/173103/
    Google for Education (2010). Exploring computational thinking Retrieved from
    www.google.com/edu/resources/programs/exploring-computationalthinking/
    index.html#!home
    Google.(2015). Exploring Computational Thinking. Retrieved from https://
    www.google.com/edu/resources/programs/exploring-computationalthinking/
    Gowers, T., Barrow-Green, J., & Leader, I. (Eds.). (2008). The Princeton companion
    to mathematics. Princeton University Press.
    Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P., & Kreuz, R. (1999).
    AutoTutor: A simulation of a human tutor. Cognitive Systems Research, 1(1),
    35–51. https://doi.org/10.1016/s1389-0417(99)00005-4
    Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state
    of the field. Educational researcher, 42(1), 38-43.
    https://doi.org/10.3102/0013189x12463051
    Grizioti, M., & Kynigos, C. (2021). Code the mime: A 3D programmable charades
    game for computational thinking in MaLT2. British Journal of Educational
    Technology, 52(3), 1004–1023. https://doi.org/10.1111/bjet.13085
    Hannafin, M., Land, S., & Oliver, K. (2013). Open learning environments:
    Foundations, methods, and models. Instructional-Design Theories and
    Models: A New Paradigm of Instructional Theory, 115–140.
    https://doi.org/10.4324/ 9781410603784-12
    Heeffer, Albrecht. (2010). “From the second unknown to the symbolic equation”. In
    Heeffer A. & Van Dyck, M. (eds) Philosophical Aspects of Symbolical
    Reasoning in Early Modern Mathematics (pp.57-101), College Publications.
    Hilliard, J., Kear, K., Donelan, H., & Heaney, C. (2020). Students’ experiences of
    anxiety in an assessed, online, collaborative project. Computers &
    Education, 143, 103675. https://doi.org/10.1016/j.compedu.2019.103675
    Hogle, J. G. (1996). Considering Games as Cognitive Tools: In Search of
    Effectiv. ERIC. https://eric.ed.gov/?id=ED425737
    Hooshyar, D., Pedaste, M., Yang, Y., Malva, L., Hwang, G.-J., Wang, M., Lim, H., &
    Delev, D. (2021). From gaming to computational thinking: An adaptive
    educational computer game-based learning approach. Journal of Educational
    Computing Research, 59(3), 383-409.
    https://doi.org/10.1177/0735633120965919
    Hou, H.-T., & Li, M.-C. (2014). Evaluating multiple aspects of a digital educational
    problem-solving-based adventure game. Computers in Human Behavior, 30,
    29–38. https://doi.org/10.1016/j.chb.2013.07.052
    Hou, H. T. (2015). Integrating cluster and sequential analysis to explore learners’ flow
    and behavioral patterns in a simulation game with situated-learning context for
    science courses: A video-based process exploration. Computers in human
    behavior, 48, 424-435.
    Hou, H. T. & Keng, S. H. (2021) A Dual-scaffolding framework integrating peerscaffolding
    and cognitive-scaffolding for an augmented reality-based
    educational board game: An analysis of learners’ collective flow state and
    collaborative learning behavioral patterns, Journal of Educational Computing
    Research. 59(3), 547-573. https://doi.org/10.1177/0735633120969409
    Hou, H.-T., Fang, Y.-S., & Tang, J. T. (2021). Designing an alternate reality board game
    with augmented reality and multi-dimensional scaffolding for promoting spatial
    and logical ability. Interactive Learning Environments, 1–21.
    https://doi.org/10.1080/10494820.2021.1961810
    Hou, HT., Wu, CS. & Wu, CH. (2022).Evaluation of a mobile-based scaffolding board
    game developed by scaffolding-based game editor: analysis of learners’
    performance, anxiety and behavior patterns. J. Comput. Educ.
    https://doi.org/10.1007/s40692-022-00231-1
    Hsieh, Y.-H., Lin, Y.-C., & Hou, H.-T. (2013). Exploring the role of flow experience,
    learning performance and potential behavior clusters in elementary students’
    game-based learning. Interactive Learning Environments, 24(1), 178–193.
    https://doi.org/10.1080/10494820.2013.834827
    Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach
    computational thinking: Suggestions based on a review of the
    literature. Computers & Education, 126, 296–310. https://doi.org/ 10.1016/
    j.compedu.2018.07.004
    Jackson, S. L., Stratford, S. J., Krajcik, J., & Soloway, E. (1994). Making Dynamic
    Modeling Accessible to Precollege Science Students. Interactive Learning
    Environments, 4(3), 233–257. https://doi.org/10.1080/1049482940040305
    Jaipal-Jamani, K., & Angeli, C. (2017). Effect of robotics on elementary preservice
    teachers’ self-efficacy, science learning, and computational thinking. Journal
    of science education and technology, 26(2), 175-192.
    https://doi.org/10.1007/s10956-016-9663-z
    Jumaat, N. F., & Tasir, Z. (2014, April 1). Instructional Scaffolding in Online
    Learning Environment: A Meta-analysis. IEEE Xplore.
    https://doi.org/10.1109/LaTi CE.2014.22
    Jun Zhang, L. (2001). Exploring variability in language anxiety: two groups of PRC
    students learning ESL in Singapore. RELC Journal, 32(1), 73–91.
    https://doi.org/10.1177/003368820103200105
    Kale, U., & Yuan, J. (2020). Still a New Kid on the Block? Computational Thinking
    as Problem Solving in Code.org. Journal of Educational Computing Research,
    073563312097205. https://doi.org/10.1177/0735633120972050
    Karaahmetoğlu, K., & Korkmaz, Ö. (2019). The effect of project-based arduino
    educational robot applications on students’ computational thinking skills and
    their perception of Basic Stem skill levels. Participatory Educational
    Research, 6(2), 1–14. https://doi.org/10.17275/per.19.8.6.2
    Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2011). Understanding
    Computational Thinking before Programming. International Journal of Game-
    Based Learning, 1(3), 30–52. https://doi.org/10.4018/ijgbl.2011070103
    Keller, J. M. (1987). Development and use of the ARCS model of instructional
    design. Journal of Instructional Development, 10(3), 2–10.
    https://doi.org/10.1007/bf02905780
    Kerrigan, J. (2018). Active Learning Strategies for the Mathematics
    Classroom. College Teaching, 66(1), 35–36.
    https://doi.org/10.1080/87567555. 2017. 1399335
    Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming
    model. The Internet and Higher Education, 8(1), 13–24.
    https://doi.org/10.1016/j.iheduc.2004.12.001
    Kiili, K. (2006). Evaluations of an Experiential Gaming Model. Human Technology:
    An Interdisciplinary Journal on Humans in ICT Environments.
    https://jyx.jyu.fi/handle/123456789/20195
    Kite, V., Park, S., & Wiebe, E. (2021). The Code-Centric Nature of Computational
    Thinking Education: A Review of Trends and Issues in Computational
    Thinking Education Research. SAGE Open, 11(2),
    https://doi.org/10.1177/21582440211016418
    Kotini, I., & Tzelepi, S. (2014). A Gamification-Based Framework for Developing
    Learning Activities of Computational Thinking. Gamification in Education and
    Business, 219–252. https://doi.org/10.1007/978-3-319-10208-5_12
    Krouska, A., Troussas, C., & Sgouropoulou, C. (2021). Mobile game-based learning
    as a solution in COVID-19 era: Modeling the pedagogical affordance and
    student interactions. Education and Information Technologies, 1–13.
    https://doi.org/10.1007/s10639-021-10672-3
    Land, S.M., Greene, B.A. Project-based learning with the world wide web: A
    qualitative study of resource integration. ETR&D 48, 45–66 (2000).
    https://doi.org/10.1007/BF02313485
    Langer, J. A. (1983). Instructional scaffolding: Reading and writing as natural
    language activities. Language Arts, 60(2), 168-175.
    https://www.jstor.org/stable/41961447#metadata_info_tab_contents
    Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for youth in practice. ACM
    Inroads, 2(1), 32. https://doi.org/10.1145/1929887.1929902
    Lee, L.-K., Cheung, T.-K., Ho, L.-T., Yiu, W.-H., & Wu, N.-I. (2019). Learning
    Computational Thinking Through Gamification and Collaborative
    Learning. Blended Learning: Educational Innovation for Personalized
    Learning, 339–349. https://doi.org/10.1007/978-3-030-21562-0_28
    Leifheit, L. (2021). The Role of Self-Concept and Motivation Within the
    “Computational Thinking” Approach to Early Computer Science Education.
    Deutsche Nationalbibliothek. http://d-nb.info/1231790725
    Liao, C. H., Chiang, C.-T., Chen, I-Chuan., & Parker, K. R. (2022). Exploring the
    relationship between computational thinking and learning satisfaction for non-
    STEM college students. International Journal of Educational Technology in
    Higher Education, 19(1). https://doi.org/10.1186/s41239-022-00347-5
    Ling, M. K. D., & Loh, S. C. (2021). Relationships between cognitive pattern
    recognition and specific mathematical domains in mathematics
    education. International Journal of Mathematical Education in Science and
    Technology, 1–21. https://doi.org/10.1080/0020739x.2021.1949059
    Liu, J., Sun, J., & Wang, S. (2006). Pattern Recognition: An overview. IJCSNS
    International Journal of Computer Science and Network Security, 6(6).
    https://www.utm.mx/~jjf/rp/RPA1.pdf
    Lodi, M., Martini, S. Computational Thinking, Between Papert and Wing. Sci &
    Educ 30, 883–908 (2021). https://doi.org/10.1007/s11191-021-00202-5
    Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational
    thinking. Proceedings of the 40th ACM Technical Symposium on Computer
    Science Education - SIGCSE ’09. https://doi.org/10.1145/1508865.1508959
    Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
    thinking through programming: What is next for K-12? Computers in Human
    Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012
    Ma, H., Zhao, M., Wang, H., Wan, X., Cavanaugh, T. W., & Liu, J. (2021). Promoting
    pupils’ computational thinking skills and self-efficacy: a problem-solving
    instructional approach. Educational Technology Research and Development.
    https://doi.org/10.1007/s11423-021-10016-5
    Ma, J., Zhang, Y., Bin, H., Wang, K., Liu, J., & Gao, H. (2022). The Development of
    Students’ Computational Thinking Practices in AI Course Using the Game-
    Based Learning: A Case Study. IEEE Xplore. https://doi.org/ 10.1109/
    ISET55194.2022.00065
    Madariaga, L., Allendes, C., Nussbaum, M., Barrios, G., & Acevedo, N. (2023).
    Offline and online user experience of gamified robotics for introducing
    computational thinking: Comparing engagement, game mechanics and coding
    motivation. Computers & Education, 193, 104664. https://doi.org/10.1016
    /j.compedu.2022.104664
    Maloney, E. A., & Beilock, S. L. (2012). Math anxiety: who has it, why it develops,
    and how to guard against it. Trends in Cognitive Sciences, 16(8), 404–406.
    https://doi.org/10.1016/j.tics.2012.06.008
    Mariani, L. (1997). Teacher support and teacher challenge in promoting learner
    autonomy. Perspectives: A Journal of TESOL Italy, XXIII (2). Retrieved from
    http://www. learningpaths. org/papers/papersupport. htm.
    Medeiros, R. P., Ramalho, G. L., & Falcao, T. P. (2019). A Systematic Literature
    Review on Teaching and Learning Introductory Programming in Higher
    Education. IEEE Transactions on Education, 62(2), 77–90.
    https://doi.org/10.1109/te.2018.2864133
    Menon, D., Viéville, T., & Romero, M. (2019). Computational thinking development
    and assessment through tabletop escape games. International Journal of Serious
    Games, 6(4), 3–18. https://doi.org/10.17083/ijsg.v6i4.319
    Moreno-Armella, L., Hegedus, S. J., & Kaput, J. J. (2008). From static to dynamic
    mathematics: historical and representational perspectives. Educational Studies
    in Mathematics, 68(2), 99–111. https://doi.org/10.1007/s10649-008-9116-6
    Moyer-Packenham, P. S., Lommatsch, C. W., Litster, K., Ashby, J., Bullock, E. K.,
    Roxburgh, A. L., Shumway, J. F., Speed, E., Covington, B., Hartmann, C.,
    Clarke-Midura, J., Skaria, J., Westenskow, A., MacDonald, B., Symanzik, J., &
    Jordan, K. (2019). How design features in digital math games support learning
    and mathematics connections. Computers in Human Behavior, 91, 316–332.
    https://doi.org/10.1016/j.chb.2018.09.036
    Muliyati, D., Sumardani, D., Siswoyo, S., Bakri, F., Permana, H., Handoko, E., &
    Sari, N. L. K. (2022). Development and evaluation of granular simulation for
    integrating computational thinking into computational physics courses.
    Education and Information Technologies, 27(2), 2585-2612.
    https://doi.org/10.1007/s10639-021-10724-8
    Nakamura, T., & Kawasaki, T. (2019, December 1). Computer Science Unplugged for
    Developing Computational Thinking and Mathematical Thinking. IEEE Xplore.
    https://doi.org/10.1109/IJCIME49369.2019.00108
    Nicholson, S. (2018). Creating Engaging Escape Rooms for the
    Classroom. Childhood Education, 94(1), 44–49.
    https://doi.org/10.1080/00094056.2018.1420363
    Pérez, A. (2018). A framework for computational thinking dispositions in
    mathematics education. Journal for Research in Mathematics Education,
    49(4), 424-461. https://doi.org/10.5951/jresematheduc.49.4.0424
    Peifer, C., & Zipp, G. (2019). All at once? The effects of multitasking behavior on
    flow and subjective performance. European Journal of Work and
    Organizational Psychology, 28(5), 682–690.
    https://doi.org/10.1080/1359432x.2019.1647168
    Pires, F., Maquine Lima, F. M., Melo, R., Serique Bernardo, J. R., & de Freitas, R.
    (2019). Gamification and Engagement: Development of Computational
    Thinking and the Implications in Mathematical Learning. 2019 IEEE 19th
    International Conference on Advanced Learning Technologies (ICALT).
    https://doi.org/10.1109/icalt.2019.00112
    Pulimood, S. M., Pearson, K., & Bates, D. C. (2016). A Study on the Impact of
    Multidisciplinary Collaboration on Computational Thinking. Proceedings of
    the 47th ACM Technical Symposium on Computing Science Education.
    https://doi.org/10.1145/2839509.2844636
    Reinhold, F., Hoch, S., Werner, B., Richter-Gebert, J., & Reiss, K. (2020). Learning
    fractions with and without educational technology: What matters for highachieving
    and low-achieving students? Learning and Instruction, 65, 101264.
    https://doi.org/10.1016/j.learninstruc.2019.101264
    Reiser, B. J. (2002). Why Scaffolding Should Sometimes Make Tasks
    More. Computer Support for Collaborative Learning: Foundations for a
    CSCL Community: Proceedings of CSCL 2002 Boulder, Colorado, USA
    January 7-11, 2002, 255.
    Reiser, B. J. (2004). Scaffolding Complex Learning: The Mechanisms of Structuring
    and Problematizing Student Work. Journal of the Learning Sciences, 13(3),
    273–304. https://doi.org/10.1207/s15327809jls1303_2
    Rheinberg, F., & Engeser, S. (2018). Intrinsic Motivation and Flow. Motivation and
    Action, 579–622. https://doi.org/10.1007/978-3-319-65094-4_14
    Richardson, F. C., & Suinn, R. M. (1972). The Mathematics Anxiety Rating Scale:
    Psychometric data. Journal of Counseling Psychology, 19(6), 551–
    554. https://doi.org/10.1037/h0033456
    Rivera, F. (2013). Teaching and Learning Patterns in School Mathematics. Springer
    Netherlands. https://doi.org/10.1007/978-94-007-2712-0
    Rodríguez del Rey, Y. A., Cawanga Cambinda, I. N., Deco, C., Bender, C., Avello‐
    Martínez, R., & Villalba‐Condori, K. O. (2020). Developing computational
    thinking with a module of solved problems. Computer Applications in
    Engineering Education, 29(3), 506–516. https://doi.org/10.1002/cae.22214
    Prensky, M. (2001). Digital Natives, Digital Immigrants Part 2: Do They Really Think
    Differently? On the Horizon, 9(6), 1–6. https://doi.org/10.1108/
    10748120110424843
    Saleem, A. N., Noori, N. M., & Ozdamli, F. (2021). Gamification Applications in Elearning:
    A Literature Review. Technology, Knowledge and Learning.
    https://doi.org/10.1007/s10758-020-09487-x
    Santos-Trigo, M., Barrera-Mora, F., & Camacho-Machín, M. (2021). Teachers’ Use of
    Technology Affordances to Contextualize and Dynamically Enrich and Extend
    Mathematical Problem-Solving Strategies. Mathematics, 9(8), 793.
    https://doi.org/10.3390/math9080793
    Sarid, O, Anson, O, Yaari, A, Margalith, M. (2004). Academic stress, immunological
    reaction, and academic performance among students of nursing and
    physiotherapy. Research in Nursing & Health, 27(5), 370–377.
    https://doi.org/10.1002/nur.20028
    Scantamburlo, T. (2014). Philosophical aspects in pattern recognition
    research. Dspace.unive.it. http://dspace.unive.it/handle/10579/4639
    Schifter, D., Monk, S., Russell, S. J., & Bastable, V. (2017). Early algebra: What does
    understanding the laws of arithmetic mean in the elementary grades? In
    Algebra in the early grades (pp. 413-448). Routledge.
    Selby, C., Woollard, J., Selby, C., & Woollard, J. (2013). Computational thinking: the
    developing definition. Eprints.soton.ac.uk. https://eprints.soton.ac.uk/356481
    Settle, A. (2011). Computational thinking in a game design course. Proceedings of the
    2011 Conference on Information Technology Education - SIGITE ’11.
    https://doi.org/10.1145/2047594.2047612
    Shin, N., Bowers, J., Krajcik, J., & Damelin, D. (2021). Promoting computational
    thinking through project-based learning. Disciplinary and Interdisciplinary
    Science Education Research, 3(1). https://doi.org/10.1186/s43031-021-00033-
    y
    Shugen, W. (2002). Framework of pattern recognition model based on the cognitive
    psychology. Geo-spatial Information Science, 5(2), 74-78.
    https://doi.org/10.1007/bf02833890
    Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational
    thinking. Educational Research Review, 22, 142–158.
    https://doi.org/10.1016/j.edurev.2017.09.003
    Siagian, M. D., Suwanto, S., & Siregar, R. (2021). The relationship of students’ prior
    knowledge and emotional intelligence to mathematical connection
    ability. Jurnal Riset Pendidikan Matematika, 8(1), 61–72.
    https://doi.org/10.21831/jrpm.v8i1.39182
    Simons, K. D., & Klein, J. D. (2006). The Impact of Scaffolding and Student
    Achievement Levels in a Problem-based Learning Environment. Instructional
    Science, 35(1), 41–72. https://doi.org/10.1007/s11251-006-9002-5
    Sinclair, N., Watson, A., Zazkis, R., & Mason, J. (2011). The structuring of personal
    example spaces. The Journal of Mathematical Behavior, 30(4), 291–303.
    https://doi.org/10.1016/j.jmathb.2011.04.001
    Soni, A., & Kumari, S. (2015). The Role of Parental Math Anxiety and Math Attitude
    in Their Children’s Math Achievement. International Journal of Science and
    Mathematics Education, 15(2), 331–347. https://doi.org/10.1007/s10763-015-
    9687-5
    Sırakaya, M., Alsancak Sırakaya, D., & Korkmaz, Ö. (2020). The Impact of STEM
    Attitude and Thinking Style on Computational Thinking Determined via
    Structural Equation Modeling. Journal of Science Education and
    Technology, 29(4), 561–572. https://doi.org/10.1007/s10956-020-09836-6
    Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual
    programming languages integrated across the curriculum in elementary
    school: A two year case study using “Scratch” in five schools. Computers &
    Education, 97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003
    Sáez-López, J.-M., Sevillano-García, M.-L., & Vazquez-Cano, E. (2019). The effect
    of programming on primary school students’ mathematical and scientific
    understanding: educational use of mBot. Educational Technology Research
    and Development, 67(6), 1405–1425. https://doi.org/10.1007/s11423-019-
    09648-5
    Steen, B. (1988). Body Composition and Aging. Nutrition Reviews, 46(2), 45–51.
    https://doi.org/10.1111/j.1753-4887.1988.tb05386.x
    Sun, C.-T., Wang, D.-Y., & Chan, H.-L. (2011). How digital scaffolds in games direct
    problem-solving behaviors. Computers & Education, 57(3), 2118–2125.
    https://doi.org/10.1016/j.compedu.2011.05.022
    Sun, L., Hu, L., & Zhou, D. (2021). Improving 7th-graders’ computational thinking
    skills through unplugged programming activities: A study on the influence of
    multiple factors. Thinking Skills and Creativity, 42, 100926.
    https://doi.org/10.1016/j.tsc.2021.100926
    Sung, W., Ahn, J., & Black, J. B. (2017). Introducing Computational Thinking to
    Young Learners: Practicing Computational Perspectives Through Embodiment
    in Mathematics Education. Technology, Knowledge and Learning, 22(3), 443–
    463. https://doi.org/10.1007/s10758-017-9328-x
    Tanenbaum, C., Gray, T., Lee, K., Williams, M., & Upton, R. (2016). STEM 2026: A
    vision for innovation in STEM education. US Department of Education,
    Washington, DC. From https://www.voced.edu.au/content/ngv:75381
    Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational
    thinking: A systematic review of empirical studies. Computers &
    Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
    Theodoridis, S. (2003). Konstantinos koutroumbas pattern recognition. In Beijing:
    Mechanical (pp. 163-205). Industrial Press.
    Vygotsky, L. S. (1978). Mind in society : The development of higher psychological
    processes. Cambridge, MA: Harvard University Press
    Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
    (2015). Defining Computational Thinking for Mathematics and Science
    Classrooms. Journal of Science Education and Technology, 25(1), 127–147.
    https://doi.org/10.1007/s10956-015-9581-5
    Widya, Rifandi, R., & Laila Rahmi, Y. (2019). STEM education to fulfil the 21st
    century demand: a literature review. Journal of Physics: Conference
    Series, 1317, 012208. https://doi.org/10.1088/1742-6596/1317/1/012208
    Windsor, W. (2010). Algebraic Thinking: A Problem Solving Approach. In ERIC.
    Mathematics Education Research Group of Australasia.
    https://eric.ed.gov/?id=ED521033
    Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33.
    https://doi.org/10.1145/1118178.1118215
    Wing, J. M. (2011). Research notebook: Computational thinking—What and why. The
    Link Magazine, 6, 20-23.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problemsolving.
    Child Psychology & Psychiatry & Allied Disciplines, 17(2), 89–
    100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
    Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational
    Thinking in Elementary and Secondary Teacher Education. ACM Transactions
    on Computing Education, 14(1), 1–16. https://doi.org/10.1145/2576872
    Caeli, E. N., & Yadav, A. (2020). Unplugged Approaches to Computational Thinking:
    a Historical Perspective. TechTrends. https://doi.org/10.1007/s11528-019-
    00410-5
    Yang, Y., Yuan, K., Feng, X., Li, X., & van Aalst, J. (2022). Fostering low‐achieving
    students’ productive disciplinary engagement through knowledge‐building
    inquiry and reflective assessment. British Journal of Educational Technology.
    https://doi.org/10.1111/bjet.13267
    Yen, W.-C., & Lin, H.-H. (2020). Investigating the effect of flow experience on learning
    performance and entrepreneurial self-efficacy in a business simulation systems
    context. Interactive Learning Environments, 1–16. https://doi.org/10.1080/
    10494820.2020.1734624

    QR CODE