簡易檢索 / 詳目顯示

研究生: 薛智仁
Chih-jen Hsueh
論文名稱: 動態光罩快速成型系統製作3D PCL管狀多孔性組織工程支架之研究
Research on Fabrication of 3D PCL Porous Tube Tissue Engineering Scaffold by Dynamic Masking Rapid Prototyping System
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 邱士軒
Shih-Hsuan Chiu
戴念梓
Nien-tzu Tai
謝明發
Ming-fa Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 105
中文關鍵詞: 動態光罩快速成型系統聚己內酯3D多孔性支架
外文關鍵詞: Dynamic mask rapid prototyping system, PCL, 3Dporous scaffold
相關次數: 點閱:403下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前實驗室所發展的動態光罩快速成型系統中,使用PCL材料加上光交聯劑PEG-HEMA來作為生醫材料系統,因PEG-HEMA製備時間過於冗長,故本研究將探討否可以有效縮短生醫材料製備時間;本研究亦會將整體系統做改善,縮短整體製程時間更快速以及提升支架精度。
    本研究採用聚己內酯(PCL)直接與acryloyl chloride做合成,此生醫材料合成時間為三小時,合成後的材料不需再添加PEG-HEMA即可受光激發交聯,因此在製備時間做了有效的縮短在實驗的過程中發現本材料所製成的支架為透明無色,一併解決先前材料為乳白色,會造成已固化材料相互反射而造成精度上的誤差與孔洞無法衝出等問題。此外,用原本系統照射於本研究的材料上會有照射時間過久的問題,故將取下先前實驗的鏡頭套統直接投射,提升光強度,讓原本單層製作時間30秒縮短為15秒,可縮短支架製作時間,並利用影像處理二值化計算出每pixel對應的值為20μm,利用鏡頭的變更並使整體縮放比例為1/10,使得支架在設計與製作中取得一個較精確的計算比例,以期可製作更複雜幾何外型之支架。
    本研究製作3D管狀結構,分為兩種形式製作:第一是以2D pattern轉一角度或偏移堆疊的方式製作,本實驗利用六邊形、方形以及三角形作為基本圖元來進行製作;另一個是以雙面梯形單元做陣列來設計出3D連通多孔性支架。本研究成功製作出多種3D多孔性連通支架,未來期望應用於組織工程細胞生長,協助細胞複製以及達到修復人體器官之目的。


    In the previous Dynamic Mask Rapid Prototyping System developed in our laboratory, PCL mixed with PEG-HEMA were used as the bio-medical material system. In this previous system, however, the PEG-HEMA preparation is a time –consuming process. This study is devoted to decreasing the preparation time of bio-material, as well as improving the system, decreasing the whole process time, and raising the scaffold accuracy.
    In this study, the bio-medical material is synthesized using PCL and acryloyl chloride for three hours. The synthesized material can be photoinitiated cross-linking without adding PEG-HEMA, indicating that the preparation time of bio-medical material is decreased effectively. In addition, the scaffold fabricated using the synthesized material is tend to be transparency, improving the problems of fabrication accuracy error and pore closure caused by the reflection of white cured material. The additional problem is the over-irradiating of the synthesized material in this study by using the previous Dynamic Mask Rapid Prototyping System. To address this problem, the visible light source irradiate directly to the material, meaning that the light intensity is increased. With this mechanism, it abridges not only the fabrication time of single layer from 30s. to 15s, but also the total fabrication time of scaffold. Beside, calculating every single pixels which equal to 20 um bythreshold and lessening the volume to first tenth by changing the lens will attain a more specific ratio about the scaffold in the design and the fabrication. Finally, fabricating more complex scaffolds in the geometric type will be more acceptable.
    This study presents the fabrication of 3D tube structure of scaffold which can be divided into two types: (1) The 3D scaffolds with interconnected pore network fabricated by angle turning or shifting layer-by-layer with 2D patterns including hexagon, triangle, and square. (2) 3D scaffolds with interconnected pore network: which are fabricated by the array design of double-side trapezoid unit. Various 3D porous scaffolds have been successfully fabricated in this study. In the future, it can be expected to be used in tissue engineering cell growth, mass cell duplication, and human organs repair.

    AbstractI 摘要III 誌 謝IV 1第一章 緒論...........................1 1.1前言...................................1 1.2研究動機與目的.........................2 1.3研究方法...............................3 1.4論文架構...............................4 2第二章 文獻探討.......................5 2.1組織工程介紹...........................5 2.1.1支架材料之特性.........................7 2.1.2高分子生醫材料.........................8 2.1.3傳統支架製作技術......................15 2.2快速原型技術..........................18 2.2.1快速原型技術加工原理..................18 2.2.2利用快速原型技術製作組織工程支架......19 3第三章 材料合成與性質檢定............33 3.1實驗藥品與設備........................33 3.2生醫材料合成與介紹....................34 3.2.1可交聯PCL合成.........................35 3.2.2材料鑑定..............................38 3.2.3光起始劑..............................44 3.2.4光聚合生醫材料........................45 3.3生醫材料性質測試......................46 3.3.1拉伸試驗..............................46 3.3.2動態機械分析(DMA).....................50 3.3.3支架性質檢測..............................53 4第四章 系統簡介與機構改善............57 4.1生醫動態光罩快速成型系統..............57 4.1.1上下照式成型系統差異比較..............57 4.2下照式生醫動態光罩快速成型系統........59 4.2.1動態光罩控制軟體......................60 4.2.2動態光罩產生器........................63 4.3生醫動態光罩快速成型系統系統變更......67 4.3.1光學系統變更..........................67 4.3.2機構設計變更與改善....................71 4.4參數設定與精度檢測....................76 4.4.1參數設定..............................76 4.4.2精度檢測..............................78 4.4.2.1量測系統介紹..........................78 4.4.2.2支架精度量測..........................80 5第五章 3D管形支架製作................83 5.1加工流程..............................83 5.23D偏移支架設計與製作..................84 5.3大孔結構支架製作......................91 5.4研究結果比較..........................97 6第六章 結論與未來研究方向............99 6.1結論..................................99 6.2未來工作與展望.......................100 參考文獻.....................................101

    【1】Hae Yong Kweon, Mi Kyong Yoo, In KyuPark, Tae Hee Kim, Hyun Chul Lee,Hyun-Sook Lee, Jong-Suk Oh, Toshihiro Akaike, and Chong-SuCho, “A noveldegradable poly caprolactone networks for tissue engineering,” Biomaterials 24 (2003) 801-808.
    【2】Background on Tissue Engineering, (http://www-2.cs.cmu.edu/People/tissue/ tutorial.html)
    【3】宋信文 梁晃千 ,“巧奪天工的人類智慧-組織工程” ,科學發展第356期,pp.6-11,2003年2月
    【4】楊婷琪,“組織工程的重要元件-生物分子”,工研院經貿中心生醫組,2002年7月
    【5】廖俊仁,“組織工程用多孔隙骨架材料”,工研院生醫工程中心,2002年
    【6】Shoufeng Yang, Kah-Fai Leong, Zhaohui DU, and Chee-Kai Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7, p679-689, 2001.
    【7】俞耀庭,生物醫用材料,初版,新文京,2004
    【8】工業技術研究院,“生醫材料與組織工程”。
    【9】張根源,“生物吸收性PLGA材料合成與應用技術”,工業技術與資訊第112期,2001年2月。
    【10】興技生物科技公司
    【11】蔡秉宏,“以聚殼醣合成光交聯性衍生物之探討”,國立成功大學化學工程研究所,碩士論文,1999。
    【12】Dumitriu S, “Medical application of synthetic polymers,” Marcel Dekker, New York, Volume 725, 1994
    【13】Jin Ho Lee, Ae Kyung Go, Se Heang Oh, Ka Eul Lee, Soon Hong Yuk, “Tissue anti-adhesion potential of ibuprofen-loaded PLLA–PEG diblock copolymer films,” Biomaterials Volume 26, p671–678, 2005.
    【14】
    J. Elisseeff, W. McIntosh, K. Anseth, S. Riley, P. Ragan, and R. Langer, “Photoencapsulation of chondrocytes in poly(ethylene oxide)-based Semi-interpenetrating networks,” Biomaterials, p164-171, 1999.
    【15】Jennie Baier Leach, Kathryn A. Bivens, Charles W. Patrick, Jr., and Christine E. Schmidt, “Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds,” Biomaterials, p578-589, 2002.
    【16】Hyung Woo Kim, Chung Wook Chung, Young Baek Kim, and Young Ha Rhee, “Preparation and hydrolytic degradation of Semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly( lactide-co-glycolide ),” International Journal of Biological Macromolecules, Volume 37, p221–226, 2005.
    【17】Yoshinori Onuki, Masaru Hoshi, Hideaki Okabe, Mikito Fujikawa, Mariko Morishita, Kozo Takayama, “Formulation optimization of photocrosslinked polyacrylic acid modified with 2-hydroxyethyl methacrylate hydrogel as an adhesive for a dermatological patch,” Journal of Controlled Release Volume 108 p331–340, 2005.
    【18】J.M. Taboas, R.D. Maddox, P.H. Krebsbach, and S.J. Hollister, “Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds,” Biomaterials, Volume 24, p181-194, 2003.

    【19】K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer, Volume 36, p837-842, 1995.
    【20】俞耀庭, “生物醫用材料,” 初版 新文京 2004年
    【21】Markus S. Widmer, Puneet K. Gupta, Lichun Lu, Rudolf K. Meszlenyi Gregory R.D. Evans, Keith Brandt, Tom Savel, Ali Gurlek, Charles W. Patrick Jr. and Antonios G. Mikos, “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration,” Biomaterials, Volume 19. pp. 1945-1955, 1998.
    【22】Linbo Wu, Dianying Jing, Jiandong Ding, “A room-temperature injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds,” Biomaterials Volume 27, p185–191, 2006.
    【23】(http://140.118.198.70/RP.html)
    【24】C. R. Deckard, “Selective laser sintering , ”Phd Thesis , The University of Texas at Austin, Austin, texas, 1988
    【25】K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar and S. W. Cha, “Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends,” Biomaterials, Volume 24, pp. 3115-3123, 2003.
    【26】Hongyun Huang, Shunsuke Oizumi, Nobusiko Kojima, Toshiki Niino and Yasuyuki Sakai, “Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials, Volume 28, pp. 3815-3823, 2007.
    【27】Crump; S. Scott,” Apparatus and method for creating three-dimensional objects”, United States Patent and Trademark Office Websites ,1989.
    【28】C.X.F. Lam, X.M. Mo, S.H. Teoh, and D.W. Hutmacher, “Scaffold development using 3D printi ng with a starch-based polymer,” Materials Science and Engineering, Volume 20, p49-56, 2002.
    【29】Min Lee, James C.Y. Dunn and Benjamin M. Wu, “Scaffold fabrication by indirect three-dimensional printing,” Biomaterials, Volume 26, pp. 4281-4289, 2005.
    【30】Samar Jyoti Kalitaa, Susmita Bosea, Howard L. Hosickb and Bandyopadhyay, “Development of controlled porosity polymer-ceramic composite caffolds via fused deposition modeling,” Materials Science and Engineering C 23, pp. 611-620, 2003.
    【31】H. Chim, D. W. Hutmacher, A. M. Chou, A. L. Oliveira, R. L. Reis, T. C. Lim, J. T Schantz: “A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering,” Oral Maxillofac. Surg.; Volume 35, p928–934, 2006.
    【32】T. H. Ang, F.S.A. Sultana, D.W. Hutmacher, Y. S. Wong, J. Y. H. Fuh, X. M. Mo, H. T. Loh, E. Burdet and S.H. Teoh, “Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system,” Materials Science and Engineering Volume 20, pp.35-42, 2002.
    【33】Mark J. Mondrinosa, Robert Dembzynskib, Lin Lub, Venkata K.C. Byrapogub, David M. Woottonb, Peter I. Lelkesa, Jack Zhoub, “Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering,” Biomaterials, Volume 27, p4399–4408, 2006.
    【34】Saif Khalil, Wei Sun, “Biopolymer deposition for freeform fabrication of hydrogel tissue constructs,”Materials Science and Engineering C, Volume 27, p469–478, .2007.

    【35】D. R. NISBET, J. S. FORSYTHE “ Characterization of neural stem cells on electrospun poly(ε-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering” J. Biomater. Sci. Polymer Edn, Vol. 19, No. 5, pp. 623–634 (2008)
    【36】Giovanni Vozzia, Christopher Flaimb, Arti Ahluwaliaa, and Sangeeta Bhatiab, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials, Volume 24, p2533–2540, 2003.
    【37】Kazuyoshi Itoga, Masayuki Yamato, Jun Kobayashi, Akihiko Kikuchi, Teruo Okano, “Cell micropatterning using photopolymerization with a liquid crystal device commercial projector,” Biomaterials Volume 25, P2047–2053, 2004.
    【38】He Jiankang, Li Dichen, Liu Yaxiong, Yao Bo, Lu Bingheng, Lian Qin “Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures,” Polymer, Volume. 48, pp. 4578-4588, 2007.
    【39】李孟龍,“動態光罩快速原型系統製造組織工程支架之研發”,國立台灣科技大學機械工程研究所,碩士論文,2005。
    【40】陳俊豪,“光固化快速成型技術製作組織工程支架之研究”,國立台灣科技大學機械工程研究所,碩士論文,200。
    【41】許貽玨,“光聚合生物可分解材料應用於RP技術製作組織工程支架性質之研究”,國立台灣科技大學機械工程研究所,碩士論文,民國96年。
    【42】陳茂揚 ”光固化快速成型系統製作3D組織工程支架”國立台灣科技大學機械工程研究所,碩士論文,民國97年。

    【43】曾俊元”動態光罩快速成型系統光聚合PCL-PEG-PCL製作3D組織工程支架”國立台灣科技大學機械工程研究所,碩士論文,民國97年。
    【44】黃孝村“下照式動態光罩快速成型系統製作3D組織工程支架”
    國立台灣科技大學機械工程研究所,碩士論文,民國97年。
    【45】許端容,”具紫外光交聯性的聚胺酯二醇樹酯合成及應用於組織工程之研究”,國立清華大學材料科學與工程研究所,碩士論文,2004。
    【46】ASTM standards: D 638-02a, Standard Test Method for Tensile Properties of Plastics.p46-59
    【47】謝國煌、陳原振、曾盛茂”動態機械分析儀之應用分析”,科儀
    新知,第十八卷四期
    【48】張家楨,聚合物黏彈性慨論,復文書局P.31(1988)
    【49】呂桓综,”組織工程用精密支架之製造”,國立中央大學機械工程研究所碩士論文,中華名國九十一年七月。
    【50】Balooch G et al., “Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth.”, J Biomech. 2004 Aug;37(8):1223-32.
    【51】Junro Yamashita et al., “Collagen and bone viscoelasticity:A Dynamic Mechanical Analysis.”, Biomed Mater Res. 2002;63(1):31-6.
    【52】奧圖瑪科技,(www.optoma.com.tw)

    無法下載圖示 全文公開日期 2014/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE