簡易檢索 / 詳目顯示

研究生: 李聯旺
Lian-Wang Lee
論文名稱: 非線性系統的自適應滑動模式控制器設計及其在流體傳動伺服系統的應用
Adaptive Sliding Mode Controller Design of Nonlinear System and Application to Fluid Power Servo System
指導教授: 江茂雄
Mao-Hsiung Chiang
口試委員: 郭中豐
Chung-Feng Jeffrey Kuo
陳義男
Yin-Nan Chen
陳炤彰
Chao-Chang A. Chen
鍾清枝
Tsing-Tshih Tsung
學位類別: 博士
Doctor
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 150
中文關鍵詞: 氣壓迴授線性化強健非線性自適應控制滑動模式控制伺服控制傅立葉級數電液泵控系統自適應模糊控制模糊滑動模式控制位置控制追蹤控制
外文關鍵詞: pneumatic, positioning control and tracking control
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對流體傳動伺服系統進行自適應滑動模式控制器設計及實驗的研究,其中包括氣壓伺服系統及變排量電液泵控伺服系統。由於流體傳動伺服系統具有非線性時變之特性,因此要針對其動態特性建立精確之系統數學模式,以作為滑動模式控制器之設計是非常不容易的。對此,本文提出兩種不同型式的自適應滑動模式控制器設計方法,以去除滑動模式控制器設計需要系統數學模式之限制及減少實際控制系統實現之困難度。為了說明上述之研究,我們將論文分成兩大部分,第一部份針對氣壓伺服系統推導以傅立葉級數為基礎之自適應滑動模式控制器,第二部份則針對變排量電液泵控伺服系統設計具自調模糊滑動模式補償之自適應模糊控制器。
第一部份,氣壓伺服系統由於氣體的可壓縮性、低黏阻、固有頻率低、系統摩擦力、閥體本身對負載的非線性特性、比例線圈的磁滯現象、零點飄移及閥軸運動時的中位無感應區等現象,使氣壓伺服系統成為一具時變且高度非線性之系統,因此該系統之穩定性易受外界干擾及系統參數變化影響而使其難以達到準確之運動控制效果。因此本文第一部份之研究旨在發展具 追蹤性能及傅立葉級數基礎之適應性滑動模式控制器(FSB-ASMC+ ),實現氣壓伺服系統之運動控制,本控制器首先以傅立葉正交級數之函數近似法估測系統之未知非線性動態,故可去除滑動模式控制器設計需系統數學模式之限制,並結合 追蹤與自適應控制器之設計方法,故可使控制器避免因函數估測誤差、未考慮之系統動態及干擾所造成之影響,因此,無需系統數學模式及嘗試錯誤法進行控制器設計及估測函數之選擇。上述之控制器設計皆輔有Lyapunov穩定性分析。此外,本文第一部份所發展之控制器可藉由 追蹤設計方法改善滑動模式控制器之嚴重不連續振顫問題。最後,並以實驗驗證所發展之具 追蹤性能及傅立葉級數基礎之適應性滑動模式控制器,實現於無桿氣壓缸所組成之氣壓伺服系統的運動控制。
第二部份,旨在發展及實現具自調模糊滑動模式補償之適應性模糊控制器,在此控制方法中,控制器由兩部分組成,包含自適應模糊控制器和自調模糊滑動模式補償器。其中,自適應模糊控制器利用模糊邏輯系統來近似等效控制器以去除滑動模式控制器設計需系統數學模式之限制,另外加入具即時自調能力之模糊滑動模式補償器來進行近似誤差和系統不確定性及外界干擾之補償;並可改善滑動模式控制器之嚴重不連續振顫問題。整個控制系統在Lyapunov意義下漸進穩定且系統之追蹤誤差收斂於零的某一個鄰域內。最後,以實驗驗證所發展之具自調模糊滑動模式補償之自適應模糊控制器,實現於變排量電液泵控伺服系統之位置控制與追蹤控制。實驗結果顯示該控制器能有效處理系統的動態變化,並使系統具有較佳之強健性與控制性能。


This dissertation presents the theoretical and experimental study of fluid power servo system which could be classified into two different domains, pneumatic servo system and variable displacement electro-hydraulic pump-controlled servo system (VDEHPCSS). Since the fluid power servo system has nonlinear and time-varying behavior, it is difficult to establish an accurate dynamic model for a model-based sliding mode control design. To deal with this problem, this dissertation proposes several stable adaptive sliding mode controllers, some of which are then applied to the pneumatic servo system and VDEHPCSS. Therefore, this dissertation is organized into two parts: Part I develops the Fourier series-based adaptive sliding mode controller for pneumatic servo system and Part II presents the adaptive fuzzy controller with self-tuning fuzzy sliding mode compensation for VDEHPCSS.
In Part I, the dominant nonlinearities in pneumatic servo systems are the couplings between motion and pressure, between pressure and flow rate, the valve nonlinearities and the cylinder friction. The nonlinear friction, especially the friction behaviour at velocity reversal, is the big obstacle for high precision motion control of a pneumatic servo system. The valve nonlinearities are complicated and it is necessary to consider their integral nonlinear effect. Thus, this study proposes a new Fourier series-based adaptive sliding mode controller with tracking performance (FSB-ASMC+ ) for pneumatic servo systems. Our controller first employs the Fourier series-based functional approximation technique to approximate the unknown nonlinear functions, thus bypassing the model-based prerequisite. Next, further efforts are made to improve the dynamic tracking performance we incorporate the tracking design technique into an adaptive sliding mode control method to make the derived controller robust against approximated errors, unmodeled dynamics and disturbances. The advantages of the proposed method are that no system dynamic models are required and the serious chattering problem can be reduced by means of the tracking design technique. To guarantee the system stability, the new laws for the coefficients of the Fourier-series functions are derived by a Lyapunov function. Generality and robustness tests are made to verify the practicality of the control strategies proposed in this dissertation. Consequently, practical experiments on the rodless pneumatic servo system are successfully implemented with different tracking profiles, which validate the proposed method.
In Part II, the design method and experimental implementation of an adaptive fuzzy controller with self-tuning fuzzy sliding mode compensation (AFC-STFSMC) proposed which has on-line tuning ability for dealing with the system time-varying and nonlinear uncertain behaviors for adjusting the control rule parameters. This control strategy employs the adaptive fuzzy approximation technique to design the equivalent controller of the conventional sliding mode control. Furthermore, the fuzzy sliding mode control scheme with self-tuning ability is introduced to compensate the approximation error of the equivalent controller for improving the control performance. The proposed AFC-STFSMC scheme can design the sliding mode controller with no requirement of the system dynamic model, be free from chattering, be stable tracking control performance, and be robust to uncertainties. Moreover, the stability proof of the proposed scheme using Lyapunov method is presented. The experimental results of the positioning control and the tracking control in VDEHPCSS with different strokes and external disturbance forces show that the proposed AFC-STFSMC approach can achieve excellent control performance and robustness with regard to parameter variations and external disturbance.

Part I A Fourier Series-Based Adaptive Sliding Mode Controller with Tracking Performance for the Nonlinear Pneumatic Servo Systems Chapter 1 Introduction Chapter 2 Dynamic Model of the Pneumatic Servo System Chapter 3 Review of the Function Approximation Technique Chapter 4 Controller Design and Stability Analysis Chapter 5 Pneumatic Servo System Experiments Result Discussions Chapter 6 Conclusions and Recommendations for Future Researches Part II Adaptive Fuzzy Controller with Self-Tuning Fuzzy Sliding Mode Compensation for the Electro-Hydraulic Pump-Controlled Servo System Chapter 1 Introduction Chapter 2 Dynamic Model of the Electro-Hydraulic Pump-Controlled Servo System Chapter 3 Controller Design and Stability Analysis Chapter 4 Electro-Hydraulic Pump-Controlled Servo System Experiments Result Discussions Chapter 5 Conclusions and Recommendations for Future Researches Reference Biographic Sketch

[1] J. L. Shearer, “Study of Pneumatic Process on the Continuous Control of Motion with Compressed Air”, Transactions of ASME, Journal of Dynamic Systems Measurement and Control, No. 78, pp. 233-249 (1956).
[2] C. R. Burrows, and C. R. Webb, “Use of Root Loci in Design of Pneumatic Servo Motors“, Control, pp. 423-427 (1966).
[3] D. R. Vaughan, “Hot-Gas Actuators: Some Limits on the Response Speed”, Transactions of ASME, Journal of Basic Engineering, pp. 113–119 (1965).
[4] J. Y. Lai, C. H. Meng, and R. Singh, “Accurate Position Control of a Pneumatic Actuator”, Transactions of ASME, Journal of Dynamic Systems Measurement and Control, Vol. 112, pp. 734-739 (1990).
[5] S. Liu, J. E. Burrows, “An Analysis of a Pneumatic Servo System and its Application to a Computer-Controlled Robot”, Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 110, No. 3, pp. 228-235 (1988).
[6] Y. Yin, and K. Araki, “Modeling and Analysis of an Asymmetric Valve-Controlled Single-Acting Cylinder of A Pneumatic Force Control System”, Proceedings of the SICE Annual Conference, pp. 1099-1104 (1998).
[7]
J. Pu, P. R. Moore, and R. H. Weston, “High-Gain Control and Tuning Strategy for Vane-Type Reciprocating Pneumatic Servo Drives”, International Journal of Production Research, Taylor-Francis, Vol. 29, No. 8, pp. 1587-1601 (1991).
[8] M. Uebing and N. D. Vaughan, “On Linear Dynamic Modeling of a Pneumatic Servo System”, Proceedings of the Fifth Scandinavian International Conference on Fluid Power, Vol. 2, pp. 363-378 (1997).
[9] S. C. Fok, E. K. Ong, “Position Control and Repeatability of a Pneumatic Rodless Cylinder System for Continuous Positioning”, Robotics and Computer Integrated Manufacturing, Vol. 15, pp. 365-371 (1999).
[10] A. Fujiwara, K. Katsumata, and Y. Ishida, “Neural Network Based Adaptive I-PD Controller for Pneumatic Cylinder”, Proceeding of the SICE Annual Conference, pp. 26-28 (1995).
[11] T. Matsukuma, A. Fujiwara, M. Namba, and Y. Ishida, “Nonlinear PID Controller Using Neural Networks”, Proceedings of IEEE International Conference on Neural Networks, Vol. 2, pp.811-814 (1997).
[12] Y. Jeon, C. Lee, and Y. Hong, ”Optimization of the Control Parameters of a Pneumatic Servo Cylinder Drive Using Genetic Algorithms”, Control Engineering Practice, No. 6, pp. 847-853 (1998).
[13] J. Wang, J. Pu, and P. Moore, “Accurate Position Control of Servo Pneumatic Actuator Systems: an Application to Food Packaging”, Control Engineering Practice, No. 7, pp. 699-706 (1999).
[14] J. Wikander, “Adaptive Control of Pneumatic Cylinders”, Ph.D dissertation, Royal Institute of Technology, Stockholm (1988)
[15] O. Oyama, M. Tanazawa, Y. Iwadate, and M. Hamada, “Model Reference Adaptive Control for a Pneumatic Cylinder Servo System”, Journal of the Japan Hydraulic Pneumatic Society, 44, Vol. 21, pp.182-186 (1990).
[16] B. W. McDonell, and J. E. Bobrow, “Adaptive Tracking Control of an Air Powered Robot Actuator”, Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 115, No. 3, pp. 427–433 (1993).
[17] K. Tanaka, A. Shimizu, and K. Sakata, “Adaptive Pole-Placement Control for Pneumatic Servo Systems with Constant Disturbances”, Transaction on Society of Instrument and Control Engineers, Vol. 30, pp. 1069-1076 (1994).
[18] B. Li, Z. Li, and Y. Xu, “Study on Adaptive Control for a Pneumatic Position Servo System”, Advance in Modelling and Analysis, C, Vol. 49, No. 2, pp. 21-28 (1997).
[19] J. Song, K. Kadowaki, and Y. Ishida, “Practical Model Reference Robust Control for Pneumatic Servo System”, Transactions of the Society of Instrument and Control Engineers, Vol. 33, No. 10, pp. 995-1001 (1997).
[20] K. Tanaka, Y. Yamada, M. Sakamoto, and S. Uchikado, “Model Reference Adaptive Control with Neural Network for Electro-Pneumatic Servo System”, Proceedings of` IEEE Conference on Control Applications, pp. 1130-1134 (1998).
[21] K. Tanaka, Y. Yamada, T. Satoh, A. Uchibori, and S. Uchikado, “Model Reference Adaptive Control with Multi-Rate Type Neural Network for Electro-Pneumatic Servo System”, Proceedings of IEEE Conference on Control Applications, pp. 1176-1721 (1999).
[22] T. Kosaki, M. Sano, “Adaptive Gain Control of Pneumatic Servo Systems with Disturbance Observers and Fuzzy Logic”, IECON Proceedings of Industrial Electronics Conference, Vol, 3, pp. 1012-1015 (1998).
[23] T. Noritsugu, T. Wada, “Adaptive Variable Structure Control of Pneumatically Actuated Robot”, Proceeding of the First International Symposium on Fluid Power, JHPS, Tokyo, pp. 591-598 (1989).
[24] J. Tang, G. Walker, “Variable Structure Control of a Pneumatic Actuator”, Transactions of ASME, Journal of Dynamic System, Measurement, and Control, Vol. 117, pp. 88-94 (1995).
[25] S. R. Pandian, Y. Hayakawa, Y. Kamoyama, and S. Kawamura, “Practical Design of Sliding Mode Controller for Pneumatic Actuators”, Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 119, pp. 666-674 (1997).
[26] B. W. Surgenor, N. D. Vaughan, “Continuous Sliding Mode Control of a Pneumatic Actuator”, Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 119, No. 3, pp.578-581 (1997).
[27] A. K. Paul, J. K. Mishra, and M. G. Radke, “Reduced Order Sliding Mode Control for Pneumatic Actuator”, IEEE Transaction on Control Systems Technology, Vol. 2, No. 3, pp. 271-276 (1994).
[28] J. Song, Y. Ishida, “Robust Sliding Mode Control for Pneumatic Servo Systems”, International Journal of Engineering Science, Vol. 35, No. 8, pp. 711-723 (1997)
[29] J. Song, Y. Ishida, “Robust Tracking Controller Design for Pneumatic Servo System”, International Journal of Engineering Science, Vol. 35, No. 10-11, pp. 905-920 (1997).
[30] S. Drakunov, G. D. Hanchin, W. C. Su, and Ü. Özgüner, “Nonlinear Control of Rodless Pneumatic Servo Actuator, or Sliding Mode Versus Coulomb Friction”, Automatica, Vol. 33, No.7, pp. 1401–1408 (1997).
[31] T. Matsui, E. Ishimoto, and M. Takawaki, “Learning Position Control of a Pneumatic Cylinder Using Fuzzy Reasoning”, Journal of Fluid Control, Vol. 20, No. 3, pp. 7-29 (1990).
[32] M. Shih, C. Hwang, “Fuzzy PWM Control the Positions of a Pneumatic Robot Cylinder by High Speed Solenoid Valves”, Proceedings of the Third JHPS International Symposium, Yokohama, Japan, pp.277-282 (1996).
[33] H. Wang, J. Mo, and N. Chen, “Hybrid Fuzzy Logic Algorithm for Position Control of Pneumatic Actuator with 3/2-way Solenoid Valves”, Proceedings of the Institution of Mechanical Engineers, Part C (Journal of Mechanical Engineering Science), Vol. 210, No. C2, pp. 167-176 (1996).
[34] K. Katsumata, A. Fujiwara, Y. Ishida, S. Notoyama, “An LQI Control for Pneumatic Cylinders Using Unsupervised Neural Network”, Journal of the Japan Hydraulics and Pneumatic Society, Vol. 27, No. 3, pp. 403–409 (1996).
[35] D. C. Gross, and K. S. Rattan, “Feed Forward MNN Controller for Pneumatic Cylinder Trajectory Tracking Control”, Proceedings of IEEE International Conference on Neural Networks, Vol. 37, pp. 1–15 (1997).
[36] J. Song, X. Bao, and Y. Ishida, “Application of MNN Trained by MEKA for the Position Control of Pneumatic Cylinder”, Proceedings of IEEE International Conference on Neural Networks, Vol. 2, pp. 829-833 (1997).
[37] T. Kimura, S. Hara, T. Takamori, “ Control with Minor Feedback for a Pneumatic Actuator System”, Proceedings of the 35th IEEE Conference on Decision and Control, Vol. 3, pp. 2365-2370 (1996).
[38] T. Kimura, H. Fujioka, K. Tokai, and T. Takamori, “Sample-Data Control for a Pneumatic Cylinder System”, Proceedings of the 35th IEEE Conference on Decision and Control, Vol.1, pp. 759-760 (1996).
[39] J. E. Bobrow, and B. W. McDonell, “Modeling, Identification, and Control of a Pneumatically Actuated, Force Controllable Robot”, IEEE Transactions on Robotics and Automation, Vol. 14, No. 5. pp. 732-742 (1998).
[40] S. Kawamura, K. Miyata, H. Hanafusa, and K. Isida, “PI Type Hierarchical Feedback Control Scheme for Pneumatic Robots”, Proceedings of IEEE International Conference on Robotics and Automation, Vol. 3, pp. 1853-1858 (1989).
[41] T. Kimura, S. Hara, T. Fujita, and T. Kagawa, “Control for Pneumatic Actuator Systems Using Feedback Linearization with Disturbance Rejection”, Proceedings of the American Control Conference, Vol. 1, pp. 825-829 (1995).
[42] S. Kobayashi, M. Cotsaftis, T. Takamori, “Robust Control of Pneumatic Actuators Based on Dynamic Impedance Matching”, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp. 983-987 (1995).
[43] M. Hamdan, Z. Gao, “A Novel PID Controller for Pneumatic Proportional Valves with Hysteresis”, Proceedings of IEEE Industry Applications Conference, Vol. 2, pp. 1198-1201 (2000).
[44] J. Y. Lai, and F. C. Ou, “Application of Time Delay Control to a Pneumatic Servo System”, Proceedings of the American Control Conference, Vol. 1, pp. 233-234 (1992).
[45] R. Nagarajan, K. A. Sajed, “Application of the Front End Control in Time-Delay Plants”, Proceedings of Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, Vol. 208, No. 2, pp. 71-78 (1994).
[46] S. Devasia, “Robust Inversion-Based Feed Forward Controller for Output Tracking Under Plant Uncertainty”, Proceedings of the American Control Conference, Vol. 1, pp. 497-502 (2000).
[47] Q. Zhou, S. Devasia, “Preview-Based Stable Inversion for Output Tracking”, Proceedings of the American Control Conference, Vol. 5, pp. 797-805 (1999).
[48] T. Tsao, M. Tomizuka, “Adaptive Zero Phase Error Tracking Algorithm for Digital Control”, Transactions of ASME, Journal of Dynamic Systems, Measurements, and Control, Vol. 109, No. 2, pp. 349-354 (1987).
[49] J. Ghosh, and B. Paden, “A Pseudo-Inverse Based Iterative Learning Control for Nonlinear Plants with Disturbance”, Proceedings of IEEE International Conference on Decision and Control, Vol. 5, pp. 5206-5212 (1999).
[50] Y. Zhao, S. Jayasuriya, “Feedforward Controller and Tracking Accuracy in the Presence Plant Uncertainly”, Transactions of ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 117, pp. 490-495 (1995).
[51] J. Slotine, and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, (1991).
[52] H. G. Sage, M. F. Mathelin, and E. Ostertage, “Robust Control of Robot Manipulators: A Survey”, International Journal of Control, Vol. 72, No. 16, pp. 1498-1522 (1999).
[53] K. D. Young, V. I. Utkin, and Ü. Özgüner, “A Control Engineer’s Guide to Sliding Model Control”, IEEE Transactions on Control System Technology, Vol. 7, No. 3, pp. 328-342 (1999).
[54] C. Canudas de Wit, H. Olsson, K. J. Ǻström, and P. Lischinsky, “A New Model for cControl of System with Friction”, IEEE Transaction of Automatic Control, Vol. 40, No. 3, pp. 419-425 (1995).
[55] P. A. Bliman, and M. Sorine, “Easy-to-Use Realistic Dry Friction Models for Automatic Control”, Proceedings of 3rd European Control Conference, Vol. 113, pp. 267-272 (1995).
[56] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Prajogo, “An Integrated Friction Model Structure with Improved Pre-Sliding Behavior for Accurate Friction Compensation”, IEEE Transaction on Automatic Control, Vol. 45, No. 4, pp. 675-686 (2000).
[57] G. Belforte, N. D’Alfio, T. Raparelli, “Experimental Analysis of Friction Force in Pneumatic Cylinder”, The Journal of Fluid Control, Vol. 20, No. 1, pp. 42-60 (1989)
[58] S. H. Choi, C. O. Lee, H. S. Cho, “Friction Compensation Control of an Electro-Pneumatic Servo Valve by Using an Evolutionary Algorithm”, Proceedings of the Institution of Mechanical Engineers, Vol. 214, No. 3, pp. 173-184 (2000).
[59] N. D. Vaughan, and J. B. Gamble, “The Modeling and Simulation of a Proportional Solenoid Valve”, Transactions of ASME, Journal of Dynamic Systems, Measurement and Control, Vol.118, pp. 173-184 (1996).
[60] M. K. Zavarehi, and P. D. Lawrence, “Nonlinear Modeling and Validation of Solenoid-Controlled Pilot-Operated Servo Valves”, IEEE/ASME Transactions on Mechatronics, Vol. 4, pp. 324-334 (1999).
[61] T. Virvalo, “Nonlinear Model of Analog Valve”, Proceedings of the Fifth Scandinavian International Conference on Fluid Power, Vol. 3, pp. 199-213 (1997)
[62] G. Tao, P. V. Kokotovic, “Adaptive Control of Plants with Unknown Hysteresis”, IEEE Transactions on Automatic Control, Vol. 40, pp. 200-212 (1995).
[63] J. W. Macki, P. Nistri, P. Zecca, “Mathematical Models for Hysteresis”, SIAM Review, Vol. 35, pp. 94-123 (1993).
[64] C. Y. Su, Y. Stepanenko, J. Svoboda, and T. P. Leung, “Robust Adaptive Control of a Class of Nonlinear Systems with Unknown Backlash-Like Hysteresis”, IEEE Transactions on Automatic Control, Vol. 45, No. 12, pp. 2427-2432 (2000).
[65] G. Tao, P. V. Kokotovic, Adaptive Control of Systems with Actuator and Sensor Nonlinearities, John Wiley & Sons, New York, (1996).
[66] J. S. Shamma, M. Athans, “Gain Scheduling: Potential Hazards and Possible Remedies”, IEEE Control Systems Magazine, Vol. 12, No. 3, pp. 101-107 (1992).
[67] D. Stilwell, and W. Rugh, “Interpolation of Observer State Feedback Controllers for Gain-Scheduling”, Proceeding of the American Control Conference, pp. 1215-1219 (1998).
[68] P. Apkarian, and R. Adams, “Advance Gain-Scheduling Techniques for Uncertain Systems”, IEEE Transactions on Control System Technology, Vol.6, pp. 21-32 (1998).
[69] D. J. Leith, W. E. Leithead, “Survey of Gain-Scheduling Analysis and Design”, International Journal of Control, Vol. 73, No. 11, pp. 1001-1025 (2000).
[70] B. Jakubczyk, W. Respondek, “On Linearization of Control Systems”, Bulletindel’ Academic Polonaise Sciences Series Sciences Mathematics, No. 28, pp. 517-522 (1980).
[71] R. Su, “On the Linear Equivalents of Nonlinear Systems”, Systems and Control Letters, No. 2, pp. 48-52 (1982).
[72] L. R. Hunt, R. Su, G. Meyer, “Global Transformations of Nonlinear Systems”, IEEE Transactions on Automatic Control, Vol. 28, pp. 24-31 (1983).
[73] G. O. Guardabassi, S. M. Savaresi, “Approximate Linearization via Feedback - an Overview”, Automatica, Vol. 37, pp. 1-15 (2001).
[74] A. Gelb, and W. E. Van der Velde, Multiple-input Describing Functions and Nonlinear System Design, McGraw-Hill, (1968).
[75] W. T. Baumann, and W. J. Rugh, “Feedback Control of Nonlinear Systems by Extended Linearization”, IEEE Transactions on Automatic Control, Vol. 31, No. 1, pp. 40-46 (1986).
[76] J. S. Shamma, and M. Athans, “Analysis of Gain Scheduled Control for Nonlinear Plants”, IEEE Transactions on Automatic Control, Vol. 35, No. 8, pp. 898-907 (1990).
[77] A. Banos, and F. N. Bailey, “Design and Validation of Linear Robust Controllers for Nonlinear Plants”, International Journal of Robust and Nonlinear Control, No. 8, pp. 803-816 (1998).
[78] H. K. Khalil, Nonlinear Systems, 2nd ed. Prentice-Hall, Inc, (1996).
[79] R. Freeman, and P. V. Kokotovic, Robust Nonlinear Control Design: State-Space and Lyapunov Techniques, Birkhäuser Boston, (1996).
[80] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, John Wiely & Sons, New York, (1995).
[81] D. P. Atherton, Nonlinear Control Engineering, Van Nostrand Reinhold, Co. Ltd., Berks, UK, (1975).
[82] D. P. Atherton, “Early Developments in Nonlinear Control”, IEEE Control Systems Magazine, Vol. 16, No. 3, pp. 34-43 (1996).
[83] J. Taylor, “Robust Nonlinear Control Based on Describing Function Methods”, American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, Vol. 64, pp. 539-546 (1998).
[84] M. Nordin, Nonlinear Backlash Compensation for Speed Controlled Elasric Systems, Doctoral Dissertation, ISSN 1401-2294, Royal Institute of Technology, Sweden, (2000).
[85] M. M. Moghaddm, A. A. Goldenberg, “Nonlinear Modeling and Robust Based Control of Flexible Jjoint Robots with Harmonic Drives”, Proceedings of the IEEE International Conference on Robotics and Automation, Mew Mexico, pp. 3130-3135 (1997).
[86] J. W. Glass, and M. A. Franchek,” Frequency-Based Nonlinear Controller Design for Regulating Systems Subjected to Time-Domain Constraints”, International Journal of Robust and Nonlinear Control, No. 10, pp. 39-57 (2000).
[87] D. B. Dov, and S. E. Salcudean, “A Force-Controlled Pneumatic Actuator”, IEEE Trans. Robotics and Automation, Vol. 11, pp. 906–911 (1993).
[88] R. B. Van Varseveld, and G. M. Bone, “Accurate Position Control of a Pneumatic Actuator Using On/Off Solenoid Valves”, IEEE/ASME Transactions of Mechatronics, Vol. 2, pp. 195–204 (1997).
[89] J. Wang, J. Pu, P. R. Moore, and Z. Zhang, “Modeling Study and Servo-Control of Air Motor Systems”, International Journal of Control, Vol. 71, pp. 459-476 (1998).
[90] J. Wang, J. Pu, and P, R. Moore, “A Practicable Control Strategy for Servo Pneumatic Actuator Systems”, Control Engineering Practice, Vol. 7, pp. 1483-1488 (1999).
[91] J. E. Bobrow, and J. Jabbari, “Adaptive Pneumatic Force Actuation and Position Control”, Journal of Dynamics Systems, Measurements, Vol. 113, pp. 267-272 (1991).
[92]
J. Gyeviki, A. Csiszar, and K. Rozsahegyi, “Sliding Modes Application in Pneumatic Positioning”, Proceedings of the IEEE International Conference on Mechatronics, Taipei, Taiwan, pp. 964-969 (2005).
[93] J. Tang, G. Walker, “Variable Structure Control of a Pneumatic Actuator”, Transactions of ASME, Journal of Dynamic System, Measurement, and Control, Vol. 117, pp. 88-94 (1995).
[94] S. R. Pandian, Y. Hayakawa, Y. Kamoyama, and S. Kawamura, “Practical Design of Sliding Mode Controller for Pneumatic Actuators”, Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 119, pp. 666-674 (1997).
[95] Y. C. Tsai, A. C. Huang, “Multiple-Surface Sliding Controller Design for Pneumatic Servo Systems”, Mechatronics, Vol. 18, pp. 506-512 (2007).
[96] A. C. Huang, Y. S. Kuo, “Sliding Control of Nonlinear Systems Containing Time-Varying Uncertainties with Unknown Bounds”, International Journal of Control, Vol. 74, No. 3, pp. 252-264 (1999).
[97] P. C. Chen and A. C. Huang, “Adaptive Sliding Control of Active Suspension Systems with Uncertain Hydraulic Actuator Dynamics”, Vehicle System Dynamics, 44, pp.357-368 (2006).
[98] Y. C. Tsai, A. C. Huang, “FAT-Based Adaptive Control for Pneumatic Servo Systems with Mismatched Uncertainties”, Mechanical Systems and Signal Processing, Vol. 22, pp. 1263-1273 (2008).
[99] W. J. Cao, J. X. Xu, Fourier Series-Based Repetitive Learning Variable Structure Control of Hard Disk Drive Servos, IEEE Transactions on Magnetics, Vol. 36, No. 5, pp. 2251–2254 (2000).
[100] N. Chayopitak, D. G. Taylar, “Fourier Series Methods for Optimal Periodic Position Control”, Proceedings of the 45th IEEE Conference on Decision & Control, pp. 1221-1226 (2006).
[101] L. Cai, W. Huang, “Fourier Series Based Learning Control and Application to Positioning table”, Robotics and Autonomous Systems, Vol. 32, pp. 89-100 (2000).
[102] H. Lu, “Pneumatic Force Control Servo System with Fuzzy Control”, Proceedings of the Third JCFP International Conference, Hangzhou, China, pp. 495-498 (1993).
[103] K. Araki, Y. B. Yin, and J. B. Chen, “High Speed Force Control of a Pneumatic Asymmetric Valve-Controlled Cylinder with a Fuzzy Controller”, Proceedings of the Fifth Triennial International Symposium on Fluid Control, Measurement and Visualization, Hayama, Japan, pp. 485-490 (1997).
[104] H. F. Ho, Y. K. Wong, and A. B. Rad, “Adaptive Fuzzy Sliding-Mode Control for SISO Nonlinear Systems”, IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 1344-1349 (2003).
[105] B. S. Chen, C. H. Lee, and Y. C. Chang, “ Tracking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach”, IEEE Transactions of Fuzzy System, Vol. 4, pp. 32–43 (1996).
[106] W. Y. Wang, M. L. Chan, T. T. Lee, and C. H. Liu, “Adaptive Fuzzy Control for Strict-Feedback Canonical Nonlinear System with Tracking Performance”, IEEE Transactions of Systems, Man, Cybernetics B, Vol. 30, pp. 878–885 (2000).
[107] E. Richer, Y. Hurmuzlu, “A High Performance Pneumatic Force Actuator System: Part І- Nonlinear Mathematical Model”, Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 122, pp. 416-425 (2000).
[108] E. Richer, Y. Hurmuzlu, “A High Performance Pneumatic Force Actuator System: Part II- Nonlinear Controller Design”, Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 122, pp. 426-434 (2000).
[109] T. Acarman, C. Hatipoğlu, “A Robust Nonlinear Controller Design for a Pneumatic Actuator”, Proceedings of the American Control Conference, pp. 4490-4495 (2001).
[110] E. J. Barth, J. Zhang, M. Goldfarb, “Sliding Mode Approach to PWM-Controlled Pneumatic Systems”, Proceedings of the American Control Conference, pp. 2362-2367 (2002).
[111] X. Shen, J. Zhang, E. J. Barth, M. Goldfarb, “Nonlinear Averaging Applied to the Control of Pulse Width Modulated (PWM) Pneumatic Systems”, Proceedings of the American Control Conference, pp. 4444-4448 (2004).
[112] J. Pu, R. H. Weston, P. R. Moore, “Digital Motion Control and Profile Planning for Pneumatic Servos”, Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 114, pp. 634–640 (1992).
[113] J. Wang, D. J. D. Wang, P. R. Moore, and J. Pu, “Modeling Study, Analysis and Robust Servo Control Pneumatic Cylinder Actuator Systems”, IEE Proceedings of the Control Theory Application, Vol. 148, No. 1, pp. 35–42 (2001).
[114] J. L. Shearer, “Study of Pneumatic Process on the Continuous Control of Motion with Compressed air”, Transactions of ASME Journal of Dynamic Systems, Measurement, and Control, No. 78, pp. 233-249 (1956).
[115] S. Scavarda, A. Kellal, and E. Richard, “Linearized Models for Electro-Pneumatic Cylinder Servo Valve System”, Proceedings of the 3rd International Conference on Advanced Robotics, pp.149-160 (1987).
[116] S. Scavarda,” Some Theoretical Aspects and Recent Developments in Pneumatic Positioning Systems”, Proceedings of the Second JHPS International Symposium on Fluid Power, pp.29-48 (1993).
[117] B. W. Andersen, The analysis and design of pneumatic systems, Robert E. Krieger Publishing Co., New York, USA, (1976).
[118] J. F. Blackburn, G. Reethof, and J. L. Shearer, Fluid power control, The Technology Press and John Wiely Inc., New York, (1960).
[119] S. Armstrong-Helouvry, P. Dupont, and C. Canudas De Wit, “Friction in Servo Machines: Analysis and Control Methods”, Transactions of the ASME, Journal of Application, Mechanics, and Reverend, Vol. 47, No. 7, pp.275-306 (1994).
[120] S. Armstrong-Helouvry, P. Dupont, and C. Canudas De Wit, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction”, Automatica, Vol. 30, pp.1083-1183 (1994).
[121] W. Rudin, Principles of Mathematical Analysis, New York: McGraw-Hill, third ed., (1976).
[122] A. C. Huang, and Y. S. Kuo, “A Model Reference Adaptive Control Scheme for Uncertain Non-Autonomous Systems”, Journal of the Chinese Society of Mechanical Engineers, Vol. 26, No. 6, pp. 537-544 (2001).
[123] Y. S. Kuo, A Study of Adaptive Control for Uncertain Non-Autonomous Systems, Ph.D dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan (2001).
[124] A. Isidori, Nonlinear Control Systems, Berlin: Springer-Verlag, second ed., (1989).
[125]
W. Jihong, K. Ülle, K. Jia, “Tracking Control of Nonlinear Pneumatic Actuator Systems Using Static State Feedback Linearization of the Input-Output Map”, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics, Vol. 56, No. 1, pp. 47-66 (2007).
[126] Z. Yang, Z. Wei, and L. Cai, “Tracking Control of a Belt-Driving System Using Improved Fourier Series Based Linear Controller”, Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp.881-886 (2005).
[127] R. Firoozian, T. J. Lim, “Comparison of PID and Active Control Techniques for Electro-Hydraulic Servo Motors”, International Conference of Intelligent Control and Instrumentation, Vol. 1, pp. 579-584 (1992).
[128] I. M. Whiting, “Tools for the Implementation of Enhanced PID Controllers and Their Use in Electro-Hydraulic Servo Applications”, Getting the Best Our of PID in Machine Control (Digest No.: 1996/287), IEE Colloquium, pp.5/1 - 5/4 (1996).
[129] G. P. Liu, S. Daley, “Optimal-Tuning Controller Design in the Frequency Domain with Application to a Rotary Hydraulic System”, Control Engineering Practice, No. 7, pp. 821-830 (1999).
[130] G. P. Liu, S. Daley, “Optimal-Tuning Nonlinear PID Control of Hydraulic Systems”, Control Engineering Practice, No. 8, pp. 1045-053 (2000).
[131] G. Han, L. Chen, J. Shao, Z. Sun, “Study of Fuzzy PID Controller for Industrial Steam Turbine Governing System”, Communications and Information Technology, ISCIT IEEE International Symposium, Vol. 2, pp. 1275-1279 (2005).
[132] J. Zou, X. Fu, H. Yang, J. Zhang, “A Particle Swarm Optimization Approach for PID Parameters in Hydraulic Servo Control System”, Intelligent Control and Automation, WCICA 2006. The Sixth World Congress, Vol. 2, pp. 7725-7729 (2006).
[133] J. Yao, L. Wang, C. Wang, Z. Zhonglin, P. Jia, “ANN-based PID Controller for an Electro-Hydraulic Servo System”, IEEE International Conference of Automation and Logistics, ICAL 2008, pp. 18-22 (2008).
[134] G. P. Nicolas, O. B. Domingo, H. M. Cesar, “An Alternative Approach for Neural Network Evolution with a Genetic Algorithm: Crossover by Combinatorial Optimization”, Neural Networks, Vol. 19, No. 4, pp. 514-528 (2006).
[135] A. Huang, Y. Rong, Z. Zhang, J. Hu, “Identification and Adaptive Control for Electro-Hydraulic Servo System Using Neural Networks”, IEEE International Conference on Intelligent Proceeding Systems, Vol. 1, pp. 688-692 (1997).
[136] T. Knohl, H. nbehaen, “Adaptive Position Control of Electro-Hydraulic Servo Systems Using ANN”, Mechatronics, Vol. 10, pp. 127-143 (2000).
[137] J. Gao, P. Wu, “A Fuzzy Neural Network Controller in the Electro-Hydraulic Position Control System”, IEEE International Conference on Intelligent Processing Systems, Vol. 1, pp. 58-63 (1997).
[138] B. Daachi, A. Benallegue, N. K. M'Sirdi, “A Stable Neural Adaptive Force Controller for a Hydraulic Actuator”, IEEE International Conference of Robotics and Automation, Proceedings 2001 ICRA, Vol. 4, pp. 3465-3470 (2001).
[139] P. Yang, J. Xu, J. He, L. Liang, G. Li, “Hybrid Control Based on Improved Radial Basis Function Network for Electro-hydraulic Servo System”, First International Conference of Information and Control, ICICIC '06, Vol. 1, pp. 117-120 (2006).
[140] B. Yao, F. Bu, J. Reedy, and G. T. C. Chiu, “Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators: Theory and Experiments”, IEEE/ASME Transactions on Mechatronics, Vol.5, No. 1, pp. 79-91 (2000).
[141] F. Bu, B. Yao, “Integrated Direct/Indirect Ddaptive Robust Motion Control of Single-Rod Hydraulic Actuators with Time-Varying Unknown Inertia”, IEEE/ASME International Conference on Intelligent Mechatronics Processing, Como, Italy, pp. 624-629 (2001).
[142] V. I. Utkin, Sliding Modes in Control Optimization, New York: Springer-Verlag, 1992.
[143] A. S. I. Zinober, Deterministic Control of uncertain Systems, Stevenage, U.K.: Peregrins, (1990).
[144] C. Edwards and S. K. Sprgeon, Sliding Mode Control: Theory and Applications, New York: Taylor & Francis, (1998).
[145] S. Draknov, Ozgner, P. Dix, B. Ashrafi, “Technical Note Sliding Mode Control for a Class of Hydraulic Position Servo”, Mechatronics, Vol. 9, No. 1, pp. 111-123 (1999).
[146] H. Liang, C. K. To, N. T. Soo, S. Y. Yi, “Vehicle Longitudinal Brake Control Using Variable Parameter Sliding Control”, Control Engineering Practice, Vol.11, No. 4, pp. 403-411 (2003).
[147] A. Bonchis, P. I. Corke, D. C. Rye, Q. P. Ha, “Variable Structure Methods in Hydraulic Servo System Control”, Automatica, Vol. 37, No. 4, pp. 589-595 (2001).
[148] A. Andrew, R. Liu, “A Simplified Approach to Force Control for Electro-Hydraulic Systems”, Control Engineering Practice, Vol. 8, pp. 1347-1356 (2000).
[149] M. R. Sirospor, S. E. Salcdean, “Nonlinear Control of Hydraulic Robots”, IEEE Transactions on Robotics and Automation, Vol. 17. No. 2, pp. 173-182 (2001).
[150] S. J. Hang, W. C. Lin, “Adaptive Fuzzy Controller with Sliding Surface for Vehicle Pension Control”, IEEE Transactions on Fuzzy Systems, Vol. 11, No. 4, pp. 550-559 (2003).
[151] D. S. Yoo, and M. J. Chung, “A Variable Structure Control with Simple Adaptation Laws for Upper Bonds on the Norm of the Uuncertainties”, IEEE Transactions on Automatic Control, Vol. 37, pp. 860-865 (1992).
[152] G. Wheeler, C. Y. S, and Y. Stepanenko, “A Sliding Mode Controller with Improved Adaptation Laws for the Upper Bonds on the Norm of Uuncertainties”, Proceedings of American Control Conference, pp. 2133-2137 (1997).
[153] H. Murrenhoff, Servo hydraulik, Lecture Notes, RWTH Aachen University, (2003).
[154] H. E. Merrit, Hydraulic control systems, John Wiley, New York, (1976).
[155] J. E. Slotin, W. Li, Applied Nonlinear Control, Prentice-Hall Inc, New Jersey, (1991).
[156] R. F. Fung, Y. C. Wang, R. T. Yang, H. H. Huang, “A Variable Structure Control with Proportional and Integral Compensations for Electro-hydraulic Position Servo Control System”, Mechatronics, vol. 7, pp. 67-81 (1997).
[157] R. F. Fung, Y. C. Wang, R. T. Yang, “Application of VSC in Position Control of a Nonlinear Electro-hydraulic Servo System”, Computers and Structures, vol. 66, No. 4, pp. 365-372 (1998).
[158] Y. Liu, H. Handroos, “Technical Note Sliding Mode Control for a Class of Hydraulic Position Servo”, Mechatronics, Vol. 9, pp.111-123 (1999).
[159] J. P. Su, “Robust Control of a Class of Nonlinear Cascade Systems: A Novel Sliding Mode Approach”, Proceedings of IEE Control Theory Application., Vol. 149, No. 2, pp.131-136 (2001).
[160] H. M. Chen, J. P. Su, J. C. Renn, “A Novel Sliding Mode Control of an Electro-hydraulic Position Servo System”, IEEE Transactions of Fundament Electron., Vol. 85, No. 8, pp.1928-1936 (2002).
[161] T. Zhao, T, Virvalo, “Fuzzy Control of a Hydraulic Position Servo with Unknown Load”, IEEE Transactions of Fuzzy System, pp. 785-788 (1993).
[162] T. Zhao, T, Virvalo, “Development of fuzzy state controller for a hydraulic position servo”, IEEE Transactions of Fuzzy System, pp. 1075-1080 (1994).
[163] T. Corbet., N, Sepehri., P. D. Lawrence, “Fuzzy Control of a Class of Hydraulically Actuated Industrial Robots”, IEEE Transactions of Control System Technology, Vol. 4:4, pp. 419-426 (1996).
[164] E. Decticek, “An Intelligent Position Control of Electro-hydraulic Drive Using Hybrid Fuzzy Control Structure”, Proceedings of the IEEE International Symposium on Industrial Electronics, Vol. 3:3, pp. 1008-1013 (1999).
[165] R. Rahbari., C, W. de Silva, “Fuzzy Logic Control of a Hydraulic System”, Proceedings of the IEEE International Symposium on Industrial Technology, Vol. 2:1, pp. 313-318 (2000).
[166] M. Maeda, S. Murakami, “A Self-Tuning Fuzzy Controller”, Fuzzy Sets and System, Vol. 47, pp. 13–21 (1992).
[167] W. Z. Qiao, W. P. Zhung, T. H. Heng, “AS Rule Self-Regulating Fuzzy Controller”, Fuzzy Sets and System, Vol. 47, pp.13–21 (1992).
[168] S. W, Kim, J. J. Lee, “Design of Fuzzy Controller with Fuzzy Sliding Surface”, Fuzzy Sets and System, Vol. 71, pp.359–369 (1995).
[169] B. J. Choi, S. W. Kwak, B. K. Kim, “Design of a Single-Input Fuzzy Logic Controller and its Properties”, Fuzzy Sets and System, Vol. 106, pp.299-308 (1999).
[170] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood Cliffs, NJ: Prentice-Hall, (1994).
[171] H. Lee. M. Tomizuka, “Robust Adaptive Control Using a Universal Approximation for SISO Nonlinear Systems”, IEEE Transactions of Fuzzy System, Vol. 8, pp. 95-106 (2001).
[172] R. M. Sanner, J. J. Slotine, “Gaussian Network for Direct Adaptive Control”, IEEE Transactions of Neural Networks, Vol. 3, pp. 837-863 (1992).
[173] L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear Systems”, IEEE Transactions of` Fuzzy System, Vol. 1, pp. 146-155 (1993).
[174] R. Palm, “Sliding Mode Fuzzy Control”, Automatica, Vol. 30, pp.14290-1437 (1994).
[175] G. C. Hwang, S. Chang, “A Stability Approach to Fuzzy Control Design for Nonlinear System”, Fuzzy Sets and System, Vol. 48, pp.279-287 (1992).
[176] J. E. Slotine and J. A. Coetess, “Adaptive Sliding Controller Synthesis for Nonlinear Systems”, International Journal of Control System, Vol. 43, No. 6, pp. 1631-1651 (1986).

無法下載圖示 全文公開日期 2014/07/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE