簡易檢索 / 詳目顯示

研究生: 王昶智
WANG, CHANG-ZHI
論文名稱: 加入積分面之改良型滑動控制運用於模組化多階層電力轉換器
A Modified Sliding Mode Control with Integral Surface for a Modular Multilevel Power Converter System
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 黃維澤
Wei-Tzer Huang
蘇健翔
Kin-Cheong Sou
辜志承
Jyh-Cherng Gu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 73
中文關鍵詞: 電壓源轉換器模組化多階層轉換器滑動模式控制硬體迴路
外文關鍵詞: Voltage Source Converter, Modular Multilevel Converter, Sliding Mode Control, Hardware-in-the-loop
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電壓源轉換器(voltage source converter, VSC)已被廣泛用於現代電力系統中,因為它們是柔性交流輸電系統(FACTS)、HVDC及分散式發電機與電網連接的組件。而在所有類型的轉換器中,模組化多階層轉換器(modular multilevel controller, MMC)因其模組化的特性,已被廣泛運用在研究及商業應用中。
    在眾多的MMC控制中,傳統的比例積分及比例共振控制器已達成需求,但因電力系統具有許多不確定性,如電網參數影響等,為了解決此問題,許多非線性控制器已被提出,例如:模型預測控制(model predictive control, MPC)及滑動模式控制(sliding mode control, SMC)。
    在本文中,我們提出一種將SMC滑動面相結合的新型滑動面。本文將所提控制器與比例積分控制器在離線與硬體迴路(hardware-in-the-loop, HIL)中實現。當受參數不確定性影響時,與傳統比例積分控制器相比,所提控制器結果更為出色。


    Voltages source converters are widely used in the modern power system as they are the main building blocks for the Flexible AC Transmission System (FACTS) devices, HVDC, and the grid-interfacer for distributed generators. Amount all types of converters, the modular multilevel converter (MMC) has been widely used in research and commercial areas due to its modular characteristics.

    For the MMC controls, the traditional proportional integral and proportional resonant controllers have been successfully implemented. However, they are unable to handle MMC, subjected to parameter uncertainties, such as impedance parameter change, grid parameters variation, etc. To overcome this problem, various nonlinear controllers have been proposed, e.g. model predictive control (MPC) and sliding mode control (SMC).

    In this thesis, we have proposed a new sliding surface which combines SMC with integral surface. The proposed method are both implemented in off-line and hardware-in-the-loop (HIL) simulation. The control results as compare to those based on PI control are superior, when subjected to various parameter uncertainty conditions.

    List of Figures List of Tables 1 Introduction 1.1 Background & Motivation 1.2 Outline 2 Modular Multilevel Converter 2.1 System Description 2.2 System Modeling 2.3 System Control 2.3.1 Phase-Locked-Loop 2.3.2 Current Controller 2.3.3 Phase-Shifted Carrier(PSC) 3 Sliding Mode Control 3.1 Overview 3.1.1 Lyapunov Theory 3.1.2 Sliding Control 3.2 Proposed PI Sliding Surface SMC for MMC 4 Simulation 4.1 Simulation Setup 4.2 Simulation Result 5 Experiment Result 5.1 Experiment Hardware Setup 5.1.1 LabVIEW FPGA Module 5.1.2 LabVIEW Real-Time Module 5.1.3 RTDS 5.2 Experiment Result 6 Conclusion and Future Work 6.1 Conclusion 6.2 Future Work REFERENCE

    [1] N. Mohan, T. Undeland, and W. Robbins, Power electronics: converters,applications, and design, ser. Power Electronics: Converters, Applications,and Design. John Wiley & Sons, 2003. [Online]. Available: https://books.google.com.tw/books?id=ToYoAQAAMAAJ
    [2] Jih-Sheng Lai and Fang Zheng Peng,"Multilevel converters-a new breed ofpower converters",IEEE Transactions on Industry Applications, vol. 32, no. 3,pp. 509517, 1996.
    [3] S. Busquets-Monge, J. Rocabert, P. Rodriguez, S. Alepuz, and J. Bordonau,"Multilevel diode-clamped converter for photovoltaic generators with independent voltage control of each solar array", IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 27132723, 2008.
    [4] M. Glinka and R. Marquardt, "A new ac/ac multilevel converter family",IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 662669, 2005.
    [5] S. Du, B. Wu, and N. Zargari, "Delta-channel modular multilevel converter for a variable-speed motor drive application",IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 61316139, 2018.
    [6] F. Xu, Z. Xu, H. Zheng, G. Tang, and Y. Xue,"A tripole hvdc system based on modular multilevel converters", IEEE Transactions on Power Delivery, vol. 29, no. 4, pp. 1683-1691, 2014.
    [7] J. Yang, P. Song, Z. Xu, H. Xiao, H. Cai, and Z. Xie,"Small-signal model of vector current-controlled mmc-upfc", IET Generation, Transmission Distribution, vol. 13, no. 18, pp. 41804189, 2019.
    [8] X. Yu, Y. Wei, and Q. Jiang,"Statcom operation scheme of the cdsm-mmc during a pole-to-pole dc fault",IEEE Transactions on Power Delivery, vol. 31, no. 3, pp. 1150-1159, 2016.
    [9] S. Du, A. Dekka, B. Wu, and N. Zargari,"Review of High-Power Converters",2018, pp. 136.
    [10] W.Wang, A. Beddard, M. Barnes, and O. Marjanovic, "Analysis of active power control for vsc-hvdc", IEEE Transactions on Power Delivery, vol. 29, no. 4, pp. 1978-1988, 2014.
    [11] S. Du, A. Dekka, B. Wu, and N. Zargari, "Role of Modular Multilevel Converters in The Power System", 2018, pp. 271309.
    [12] S. Yang, Y. Tang, and P. Wang, "Distributed control for a modular multilevel converter", IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5578-5591, 2018.
    [13] R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, "Proportional-resonant controllers and flters for grid-connected voltage-source converters, IEE Proceedings Electric Power Applications, vol. 153, no. 5, pp. 750762, 2006.
    [14] J. Qin and M. Saeedifard, "Predictive control of a modular multilevel converter for a back-to-back hvdc system", IEEE Transactions on Power Delivery, vol. 27, no. 3, pp. 1538-1547, 2012.
    [15] M. Vatani, B. Bahrani, M. Saeedifard, and M. Hovd, "Indirect nite control set model predictive control of modular multilevel converters", IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1520-1529, 2015.
    [16] D. A. Montoya-Acevedo, J. C. Buitrago-Herrera, and A. Escobar-Mejia, "Feedback linearization applicable to the state-space modelling of an hvdc terminal based on modular multilevel converteter", in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 2666-2672.
    [17] V. Utkin and Hoon Lee, "Chattering problem in sliding mode control systems",in International Workshop on Variable Structure Systems, 2006. VSS'06., 2006, pp. 346-350.
    [18] M. Tanelli and A. Ferrara, "Enhancing robustness and performance via switched second order sliding mode control", IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 962-974, 2013.
    [19] Q. Yang, M. Saeedifard, and M. A. Perez, "Sliding mode control of the modular multilevel converter", IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 887-897, 2019.
    [20] M. Ishfaq, W. Uddin, K. Zeb, S. U. Islam, S. Hussain, I. Khan, and H. J. Kim, "Active and reactive power control of modular multilevel converter using sliding mode controller", in 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 2019, pp. 1-5.
    [21] L. Harnefors, A. Antonopoulos, S. Norrga, L. Angquist, and H. Nee, "Dynamicm analysis of modular multilevel converters", IEEE Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2526-2537, 2013.
    [22] Se-Kyo Chung, "A phase tracking system for three phase utility interface inverters", IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 431-438, 2000.
    [23] S. Du, A. Dekka, B. Wu, and N. Zargari, "Fundamentals of Modular Multilevel Converter", 2018, pp. 37-78.
    [24] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari, and G. Sciutto, "A new multilevel pwm method: a theoretical analysis", in 21st Annual IEEE Conference on Power Electronics Specialists, 1990, pp. 363-371.
    [25] V. Utkin, "Variable structure systems with sliding modes", IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212-222, 1977.
    [26] A. Lyapunov, "General Problem of the Stability Of Motion", ser. Control Theory and Applications Series. Taylor & Francis, 1992. [Online]. Available: https://books.google.com.tw/books?id=4tmAvU3_SCoC
    [27] J. E. Slotine and W. Li, "Applied Nonlinear Control". Englewood Clis, NJ: Prentice-Hall, 1991.
    [28] J. Y. Hung, W. Gao, and J. C. Hung, "Variable structure control: a survey",IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
    [29] A. Etxegarai, P. Eguia, E. Torres, A. Iturregi, and V. Valverde, "Review of grid connection requirements for generation assets in weak power grids",Renewable and Sustainable Energy Reviews, vol. 41, pp. 1501-1514, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S136403211400803X
    [30] RTDS harware GP5/GPC cards, https://knowledge.rtds.com/hc/en-us/articles/360034285894-PB5-Card, 2013, online; accessed 7 July 2020.
    [31] Y. Lo, Y. Chen, K. L. Lian, H. Karimi, and C. Wang, "An iterative control method for voltage source converters to eliminate uncharacteristic harmonics under unbalanced grid voltages for high-power applications", IEEE Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1419-1429, 2019.
    [32] RTDS Technologies, REAL TIME DIGITAL SIMULATOR Power System User's Manual, RTDS Technologies Inc.
    [33] Y. Gui, C. Kim, C. C. Chung, J. M. Guerrero, Y. Guan, and J. C. Vasquez,"Improved direct power control for grid-connected voltage source converters",IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 8041-8051,2018.
    [34] Y. Li, G. Tang, T. An, H. Pang, P. Wang, J. Yang, Y. Wu, and Z. He, "Power compensation control for interconnection of weak power systems by vsc-hvdc",IEEE Transactions on Power Delivery, vol. 32, no. 4, pp. 1964-1974,2017.

    無法下載圖示 全文公開日期 2025/08/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE