簡易檢索 / 詳目顯示

研究生: 張書郁
Shu-Yu Chang
論文名稱: 有機金屬框架ZIF-8 介面層對銅箔陽極鋰離子沉積的影響
Influence of ZIF-8 layer on the Li deposition on Cu anode
指導教授: 林昇佃
Shawn D. Lin
口試委員: 林昇佃
Shawn D. Lin
葉旻鑫
Min-Hsin Yeh
蘇威年
Wei-Nien Su
林修正
Xiu-Zheng Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 134
中文關鍵詞: 無陽極負極ZIF-8硫化物固態電解質銅箔集電器
外文關鍵詞: Anode free, ZIF-8, Sulfide Solid Electrolyte, Copper foil current collector
相關次數: 點閱:190下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

綠能技術與電能交通載具的發展使人類對二次電池的需求不斷升高,高能量密度電池趨向於使用固態電解質與無陽極電池的研究發展,但需要克服庫倫效率低落、枝晶生長與低循環壽命等問題。本研究期望MOFs以其有序結構能使鋰離子在銅箔集電器表面均勻的沉積,探討使用ZIF-8作為介面層,對電池充放電的影響,在使用LiTFSI/DOL:DME(1:1 v/v%)+2% LiNO 3液態電解質鋰電池當中,我們觀察到ZIF-8能使鋰金屬均勻穩定的沉積與剝離,達到延長循環壽命的效果。在使用硫化物固態電解質鋰電池時,ZIF-8層的效果並不如液態電解質好,觀察到鋰金屬沉積在陽極時會穿透塗層,在塗層表面形成死鋰,本研究以Li-Nafion作為ZIF-8塗層的Binder,將ZIF-8塗層填充成連續相,避免ZIF-8層受鋰金屬的穿透,達到較好的庫倫效率、並抑制硫化物固態電解質與鋰金屬間的反應,使充放電有更穩定的電容量與更少電容量的衰退。在固態電解質電池中,循環壽命無法有效提升,可能因為塗層無法抵抗鋰金屬沉積與剝離所產生的機械應力,使塗層破裂時增加電極表面的不均勻性,促使鋰枝晶的生長而導致電池短路。


The advancement of renewable energy technology and electric vehicles has spurred a rising demand for secondary batteries. High-energy-density batteries commonly incorporate solid electrolytes and anode-free designs. However, these two designs must surmount challenges like low Coulombic efficiency, dendrite growth, and diminished cycle longevity.

This research aims to enhance battery performance by applying a ZIF-8 coating onto copper foil current collectors using diverse binders. Subsequently, these coated collectors are integrated into lithium metal half cells, employing both liquid and solid electrolytes to assess their impact on the charging and discharging processes. In the context of lithium batteries with LiTFSI/DOL:DME (1:1 In v/v\%)+2\%LiNO$_3$ liquid electrolyte, our findings indicate that ZIF-8 facilitates the uniform and stable deposition and stripping of lithium metal, thereby extending the battery's lifecycle.

Nonetheless, when utilizing a lithium battery furnished with a sulfide solid electrolyte, the ZIF-8 layer's efficacy is comparatively inferior to that observed with the liquid electrolyte. Upon depositing lithium metal onto the anode, there is an infiltration of the coating layer, leading to inactive lithium within the coating. Our investigation reveals that introducing Li-Nafion as a binder in the slurry results in a gap-free ZIF-8 coating. This strategic implementation mitigates the intrusion of lithium dendrites into the ZIF-8 layer, yielding improved Coulombic efficiency and hindering undesirable reactions between the sulfide solid electrolyte and lithium metal. Consequently, the charge and discharge processes exhibit enhanced stability in terms of capacity retention.

In the realm of solid-state electrolyte batteries, the challenge lies in the inability to significantly enhance cycle longevity. This could be attributed to the coating's insufficient resistance against the mechanical stress caused by lithium metal deposition and detachment. As the coating fissures, it induces irregularities on the electrode surface, thereby fostering the growth of lithium dendrites, which ultimately results in battery failure due to short-circuiting.

論文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIII 1 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 鋰電池陽極上的鋰枝晶與死鋰生成 . . . . . . . . . 5 1.2.2 鋰枝晶的形成與生長機制 . . . . . . . . . . . . . . 6 1.2.3 死鋰與鋰枝晶生長的抑制策略 . . . . . . . . . . . 9 1.2.4 MOFs 作為介面保護層協助鋰金屬的均勻沉積 . . . 13 1.2.5 鋰離子在 MOFs 當中的傳輸方法 . . . . . . . . . . 14 1.2.6 ZIF-8 塗層對鋰電池充放電的影響 . . . . . . . . . 15 1.2.7 成核過電位與極化電壓 . . . . . . . . . . . . . . . 16 1.3 研究目的與方法 . . . . . . . . . . . . . . . . . . . . . . . 19 2 實驗方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 ZIF-8 晶體製備 . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 銅箔陽極集電器的介面層製作 . . . . . . . . . . . . . . . 22 2.2.1 銅箔預處理 . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 ZIF-8(PVDF) 複合介面塗層的製作方法 . . . . . . 24 2.2.3 ZIF-8(Li-Nafion) 複合介面塗層的製作方法 . . . . 34 2.3 塗層的厚度與均勻度的測量 . . . . . . . . . . . . . . . . . 39 2.4 液態電解質鋰離子鈕扣電池的組裝 . . . . . . . . . . . . . 40 2.4.1 陽極集電器的裁切 . . . . . . . . . . . . . . . . . 40 2.4.2 液態電解質 DD-LN 的製備 . . . . . . . . . . . . . 41 2.4.3 液態電解質鋰電池的組裝 . . . . . . . . . . . . . . 42 2.5 固態電解質鋰離子電池的製備 . . . . . . . . . . . . . . . 44 2.6 電池的充放電與 EIS 電阻測量 . . . . . . . . . . . . . . . 46 3 結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 刮刀塗佈法製作 ZIF-8 塗層 . . . . . . . . . . . . . . . . . 48 3.1.1 ZIF-8 塗層優化 . . . . . . . . . . . . . . . . . . . 48 3.1.2 ZIF-8 在漿料中的團塊問題與分散方法 . . . . . . . 48 3.1.3 晶體塗層間的孔洞問題 . . . . . . . . . . . . . . . 52 3.2 ZIF-8 介面層對銅箔陽極在液態電解質充放電的影響 . . . 60 3.3 ZIF-8 介面層對硫化物固態電解質鋰電池的影響 . . . . . . 68 3.3.1 固態電解質厚度 . . . . . . . . . . . . . . . . . . . 68 3.3.2 集電器表面特性對充放電行為的影響 . . . . . . . . 72 3.3.3 固態電解質 ZIF-8 塗佈層對 LPSC 半電池的影響 . 80 3.4 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

[1] Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda,
D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, et al., “High-energy
long-cycling all-solid-state lithium metal batteries enabled by silver–
carbon composite anodes,” Nature Energy, vol. 5, no. 4, pp. 299–308,
2020.
[2] Y. He, X. Ren, Y. Xu, M. H. Engelhard, X. Li, J. Xiao, J. Liu, J.-G.
Zhang, W. Xu, and C. Wang, “Origin of lithium whisker formation
and growth under stress,” Nature nanotechnology, vol. 14, no. 11,
pp. 1042–1047, 2019.
[3] H. Liu, X.-B. Cheng, J.-Q. Huang, H. Yuan, Y. Lu, C. Yan, G.-L. Zhu,
R. Xu, C.-Z. Zhao, L.-P. Hou, et al., “Controlling dendrite growth in
solid-state electrolytes,” ACS Energy Letters, vol. 5, no. 3, pp. 833–
843, 2020.
[4] Y. Ren, Y. Shen, Y. Lin, and C.-W. Nan, “Direct observation of
lithium dendrites inside garnet-type lithium-ion solid electrolyte,”
Electrochemistry Communications, vol. 57, pp. 27–30, 2015.
[5] C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, and L. Hu, “Ultrafine sil-
ver nanoparticles for seeded lithium deposition toward stable lithium
metal anode,” Advanced materials, vol. 29, no. 38, p. 1702714, 2017.
[6] S. Bai, Y. Sun, J. Yi, Y. He, Y. Qiao, and H. Zhou, “High-power
li-metal anode enabled by metal-organic framework modified elec-
trolyte,” Joule, vol. 2, no. 10, pp. 2117–2132, 2018.
[7] Y. Ma, L. Wei, Y. He, X. Yuan, Y. Su, Y. Gu, X. Li, X. Zhao, Y. Qin,
Q. Mu, et al., “A “blockchain”synergy in conductive polymer-
filled metal–organic frameworks for dendrite-free li plating/stripping
with high coulombic efficiency,” Angewandte Chemie International
Edition, vol. 61, no. 12, p. e202116291, 2022.
[8] Y. Lin, Q. Zhang, C. Zhao, H. Li, C. Kong, C. Shen, and L. Chen,
“An exceptionally stable functionalized metal–organic framework for
lithium storage,” Chemical Communications, vol. 51, no. 4, pp. 697–
699, 2015.
[9] A. Mohammadi, L. Monconduit, L. Stievano, and R. Younesi, “Mea-
suring the nucleation overpotential in lithium metal batteries: Never
forget the counter electrode!,” Journal of The Electrochemical Soci-
ety, no. 7, p. 070509, 2022.
[10] A. Pei, G. Zheng, F. Shi, Y. Li, and Y. Cui, “Nanoscale nucleation
and growth of electrodeposited lithium metal,” Nano letters, vol. 17,
no. 2, pp. 1132–1139, 2017.
[11] C.-s. Wu, Z.-h. Xiong, C. Li, and J.-m. Zhang, “Zeolitic imidazo-
late metal organic framework zif-8 with ultra-high adsorption capac-
ity bound tetracycline in aqueous solution,” RSC advances, vol. 5,
no. 100, pp. 82127–82137, 2015.
[12] S. Shin, M. Yang, L. J. Guo, and H. Youn, “Roll-to-roll cohesive,
coated, flexible, high-efficiency polymer light-emitting diodes utiliz-
ing ito-free polymer anodes,” Small, vol. 9, no. 23, pp. 4036–4044,
2013.
[13] D. N. Ta, H. K. Nguyen, B. X. Trinh, Q. T. Le, H. N. Ta, and H. T.Nguyen, “Preparation of nano-zif-8 in methanol with high yield,” The Canadian Journal of Chemical Engineering, vol. 96, no. 7, pp. 1518– 1531, 2018.
[14] L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang, J. Zhao, B. Wang, T. Chen, Y. Sun, P. Jia, et al., “Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up,” Nature nanotechnology, vol. 15, no. 2, pp. 94–98, 2020.
[15] M. Nagao, A. Hayashi, M. Tatsumisago, T. Kanetsuku, T. Tsuda, and S. Kuwabata, “In situ sem study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a li 2 s–p 2 s 5 solid electrolyte,” Physical Chemistry Chemical Physics, vol. 15, no. 42, pp. 18600–18606, 2013.
[16] J.-S. Kim, D. W. Kim, H. T. Jung, and J. W. Choi, “Controlled lithium
dendrite growth by a synergistic effect of multilayered graphene coating
and an electrolyte additive,” Chemistry of Materials, vol. 27,
no. 8, pp. 2780–2787, 2015.
[17] G. Jiang, F. Li, H. Wang, M. Wu, S. Qi, X. Liu, S. Yang, and J. Ma,
“Perspective on high-concentration electrolytes for lithium metal bat-
teries,” Small Structures, vol. 2, no. 5, p. 2000122, 2021.
[18] B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang,
J. Yang, and J. Xiao, “The role of the solid electrolyte interphase layer
in preventing li dendrite growth in solid-state batteries,” Energy &
Environmental Science, vol. 11, no. 7, pp. 1803–1810, 2018.
[19] A. R. Fauziah, C.-W. Chu, and L.-H. Yeh, “Engineered subnanochan-
nel ionic diode membranes based on metal–organic frameworks for
boosted lithium ion transport and osmotic energy conversion in or-
ganic solution,” Chemical Engineering Journal, vol. 452, p. 139244,
2023.
[20] D. Lu, Y. Shao, T. Lozano, W. D. Bennett, G. L. Graff, B. Polzin,
J. Zhang, M. H. Engelhard, N. T. Saenz, W. A. Henderson, et al.,
“Failure mechanism for fast-charged lithium metal batteries with
liquid electrolytes,” Advanced Energy Materials, vol. 5, no. 3,
p. 1400993, 2015.
[21] K.-H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J.
Sanchez, and N. P. Dasgupta, “Dead lithium: mass transport effects
on voltage, capacity, and failure of lithium metal anodes,” Journal of
Materials Chemistry A, vol. 5, no. 23, pp. 11671–11681, 2017.
[22] S. Wenzel, S. J. Sedlmaier, C. Dietrich, W. G. Zeier, and J. Janek,
“Interfacial reactivity and interphase growth of argyrodite solid elec-
trolytes at lithium metal electrodes,” Solid State Ionics, vol. 318,
pp. 102–112, 2018.
[23] S. Menkin, C. A. O’Keefe, A. B. Gunnarsdóttir, S. Dey, F. M. Pesci,
Z. Shen, A. Aguadero, and C. P. Grey, “Toward an understanding of
sei formation and lithium plating on copper in anode-free batteries,”
The Journal of Physical Chemistry C, vol. 125, no. 30, pp. 16719–
16732, 2021.
[24] S. R. Venna, J. B. Jasinski, and M. A. Carreon, “Structural evolu-
tion of zeolitic imidazolate framework-8,” Journal of the American
Chemical Society, vol. 132, no. 51, pp. 18030–18033, 2010.
[25] M. S. Denny Jr and S. M. Cohen, “In situ modification of metal–
organic frameworks in mixed-matrix membranes,” 2015.
[26] A. I. Tok, F. Y. Boey, and Y. Lam, “Non-newtonian fluid flow model
for ceramic tape casting,” Materials Science and Engineering: A,
vol. 280, no. 2, pp. 282–288, 2000.
[27] Y. T. Chou, Y. T. Ko, and M. F. Yan, “Fluid flow model for ceramic
tape casting,” Journal of the American Ceramic Society, vol. 70,
no. 10, pp. C–280, 1987.
[28] F. Aguesse, W. Manalastas, L. Buannic, J. M. Lopez del Amo,
G. Singh, A. Llordés, and J. Kilner, “Investigating the dendritic
growth during full cell cycling of garnet electrolyte in direct con-
tact with li metal,” ACS applied materials & interfaces, vol. 9, no. 4,
pp. 3808–3816, 2017.
[29] M. Klinsmann, F. E. Hildebrand, M. Ganser, and R. M. McMeeking,
“Dendritic cracking in solid electrolytes driven by lithium insertion,”
Journal of Power Sources, vol. 442, p. 227226, 2019.
[30] N. Solomon and I. Solomon, “Effect of deformation-induced phase
transformation on aisi 316 stainless steel corrosion resistance,” Engi-
neering Failure Analysis, vol. 79, pp. 865–875, 2017.
[31] C.-L. Song, J.-R. Luo, L.-Y. Ma, Z.-H. Li, H. Wang, Y.-P. Cai, and
X.-J. Hong, “Dendrite-free lithium metal batteries achieved with ce-
mof membrane coating with one-dimensional continuous oxygen-
containing channels for rapid migration of li ions,” Journal of Ma-
terials Chemistry A, vol. 10, no. 35, pp. 18248–18255, 2022.

QR CODE