簡易檢索 / 詳目顯示

研究生: 王勝弘
Sheng-hung Wang
論文名稱: 能克服路面障礙之移動機器人平台設計
Design and simulation for armed mobile robot on uneven terrain
指導教授: 林其禹
Chyi-yeu Lin
口試委員: 李維楨
Wei-chen Lee
陳亮光
Liang-kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 56
中文關鍵詞: 移動機器人路面障礙零力矩點
外文關鍵詞: mobile robot, uneven terrain, zero moment point
相關次數: 點閱:128下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文之研究目標是設計一部能克服路面障礙之移動機器人平台,目的是讓移動機器人能在不平坦路面順利移動前進抵達任務現場,並經由裝設於平台上的機械手臂與感測裝置,執行物件操作和收集環境資訊等任務。經分析既有文獻中介紹的移動機器人,對其各類型移動機器人的機構特點、要克服的目標環境與用途來分進行討論與分析。再依分析結論,選用適合的機構類型作為移動機器人平台的設計構想。此外,依據零力矩點(ZMP)理論作為判斷移動機器人克服路面障礙的穩定準則,配合步態策略模擬移動機器人克服目標環境。


This research aims to design an armed mobile robot that can move on uneven terrain. The mobile robot can overcome certain obstacles on the road and maintain balance during movement. The mobile robot can perform the task by using the 6-axis manipulator and sensors installed on the robot platform. The mechanism features of all types of mobile robot which can overcome the target environment have been carefully analyzed and studied on its feasibility. The current mobile robot was based on the better mechanism types in the analysis results. Furthermore the Zero Moment Point (ZMP) theory was used to identify stability of the mobile robot on uneven terrain, and the gait strategy of the mobile robot was studied to overcome the target environment.

摘要..........................................I Abstract......................................II 致謝..........................................III 圖目錄........................................V 表目錄........................................VI 第1章 緒論..................................1 1.1 研究動機與目標........................1 1.2 文獻探討..............................2 1.3 章節簡介..............................9 第2章 移動機器人平台之設計條件探討..........10 2.1 移動機器人之機構特點..................10 2.2 目標環境..............................12 2.3 移動機器人平台之用途..................12 第3章 移動機器人平台設計....................13 3.1 設計構想說明..........................13 3.1.1 以RT-Mover為機構雛形之探討............13 3.2 硬體架構..............................15 3.3 系統架構..............................16 3.4 穩定度之評估準則......................18 3.5 機構設計..............................19 3.6 結構分析..............................26 第4章 移動機器人之運動分析與模擬............31 4.1 移動機器人之運動分析..................31 4.2 移動機器人之運動模擬..................33 第5章 結論及未來展望........................40 5.1 結論..................................40 5.2 未來展望..............................40 參考文獻......................................41 附錄..........................................44 附錄一........................................44 附錄二........................................45 附錄三........................................46 作者簡介......................................47

[1] HOMDA, URL:http://www.honda-taiwan.com.tw/index.aspx
[2] HRP-4C, URL:http://robot.watch.impress.co.jp/cda/news/2009/03/16/1665.html
[3] S. Hirose, et al., “The Gait Control System of the Quadruped WalkingVehicle,” Journal of the Robotics Society of Japan, vol.3, no.4, pp.304–323, 1985.
[4] Seddon, T., Animal Locomotion, BLA Publishing Limited, 1988.
[5] S. M. Song and K. J. Waldron, “Machines That Walk: The Adaptive Suspension Vehicle,” MIT Press, 1989.
[6] Pfeiffer, F., Weidemann, H.J., and Danowski, P. “Dynamics of the Walking Stick Insect,” IEEE Transactions on Control System Technology, pp.9-13, 1991.
[7] 康揚股份有限公司,「中輪驅動電動輪椅之底架構造」,中華民國新型專利,M360029,2009。
[8] M. Lauria, I. Nadeau, P. Lepage, Y. Morin, P. Giguère, F. Gagnon, D. Létourneau and F. Michaud, “Design and control of a four steered wheeled mobile robot,” Proceedings Annual Conference of the IEEE.
[9] S. Nakajima and E. Nakano, “Adaptive Gait for Large Rough Terrain of a Leg-wheel Robot (First Report: Gait Strategy),” Journal of Robotics and Mechatronics, vol.20, no.5, pp.801-805, 2008.
[10] S. Nakajima and E. Nakano, “Adaptive Gait for Large Rough Terrain of a Leg-wheel Robot (Second Report: Step-Up Gait),” Journal of Robotics and Mechatronics, vol.20, no.6, pp.913-920, 2008.
[11] S. Nakajima and E. Nakano, “Adaptive Gait for Large Rough Terrain of a Leg-wheel Robot (Third Report: Step-Down Gait),” Journal of Robotics and Mechatronics, vol.21, no.1, pp.12-19, 2009.
[12] S. Nakajima and E. Nakano, “Adaptive Gait for Large Rough Terrain of a Leg-wheel Robot (Fourth Report: Step-Over Gait),” Journal of Robotics
and Mechatronics, vol.21, no.2, pp.285-292, 2009.
[13] S. Nakajima, “Concept of a Four-wheel-type Mobile Robot for Rough TerrainRT-Mover”Proc. of the IROS, pp.3257-3264, 2009.
[14] Markus Eich, Felix Grimminger, Stefan Bosse, Dirk Spenneberg and Frank Kirchner, “Asguard: A Hybrid -Wheel Security and SAR-Robot Using Bio-Inspired Locomotion for Rough Terrain,” German Research Center for Arti_cial Intelligence (DFKI)
[15] Shuan-Yu Shen, Cheng-Hsin Li, Chih-Chung Cheng, Jau-Ching Lu, Shao-Fan Wang, and Pei-Chun Lin, “Design of a Leg-Wheel Hybrid Mobile Platform,” IEEE/RSJ International Conference on Intelligent Robots and Systems, ON, St. Louis, USA October 11-15, 2009.
[16] P. Ben-Tzvi, S. Ito, and A. A. Goldenberg, “Autonomous stair climbing with reconfigurable tracked mobile robot,” Proc. IEEEWorkshop Robot. Sens. Environ., Ottawa, ON, Canada, pp. 1–6, Oct. 2007.
[17] Gemini-Scout robot, URL: https://share.sandia.gov/news/resources/news_releases/miner-scou/
[18] Arash Kalantari, Ehsan Mihankhah and S. Ali .A. Moosavian “Safe Autonomous Stair Climbing for a Tracked Mobile Robot Using a Kinematics based Controller,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009.
[19] F. Erbatur, A. Okazaki, K. Obiya, T. Takahashi, and A. Kawamura, “A study on the zero moment point measurement for biped walking robots,” Proc.7th Int. Workshop on Advanced Motion Control, pp. 431–436 ,2002.
[20] Q. Huang, S. Sugano, and K. Tanie, “Stability Compensation of a Mobile Manipulator by Manipulator Motion: Feasibility and planning,” Advanced Robotics, vol. 13, no. 1, pp. 25–40, 1999.
[21] Shuro Nakajima, “RT-Mover: a rough terrain mobile robot with a simple leg-wheel hybrid mechanism,” The International Journal of Robotics Research published online 22 June 2011.

QR CODE