簡易檢索 / 詳目顯示

研究生: 張峻旗
Chun-Chi Chang
論文名稱: 以反應式離子束濺鍍法沉積氧化銀及其摻鋁之特性研究
Characterization of AgxO and Al:AgxO thin films prepared by reactive ion beam sputter deposition
指導教授: 趙良君
Liang-Chiun Chao
口試委員: 黃柏仁
Bohr-Ran Huang
何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 79
中文關鍵詞: 離子束濺鍍氧化銀鋁摻雜
外文關鍵詞: Ion beam sputter, silver oxide, Aluminum doped
相關次數: 點閱:336下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗使用反應式離子束濺鍍法沉積氧化銀,藉由調變不同離子束能量、沉積溫度及氧氣分壓(Opf)來沉積氧化銀薄膜,之後再將鋁摻入薄膜觀察其變化。XRD分析在陽極電壓700 V下沉積,在Opf = 100%下能成功的製備出單相Ag2O;在陽極電壓提升至1000 V下沉積,則成功的製備出單相AgO;在陽極電壓提升至1500 V下沉積,則成功的製備出雙相Ag2O及AgO。在低於80%之Opf下沉積或者基板溫度超過200C,則金屬銀無法完全形成氧化態。以單相之Ag2O之沉積條件將Al摻入後,XRD分析顯示,隨著Al摻質增加,晶粒大小由4.2 nm增至17.9 nm。再以單相之AgO之沉積條件將Al摻入後,XRD分析表示AgO轉變成Ag2O,並且在繼續提升摻雜量,明顯提升結晶性,繞射角度由32.96°右移至33.06°,推測Al3+成功取代Ag3+。在拉曼分析中,在700、780、810及930 cm-1 之拉曼峰值中,表示薄膜表面有碳化現象。在穿透光譜分析中,表示Ag2O能隙約為3.0 eV,AgO約為2.9 eV,兩者皆為直接能隙。在Al摻雜後,當Al摻雜量由0.0 at.%提升至4.7 at.%時,Ag2O能隙提升由3.0 eV提升至3.2 eV,但增至6.0 at.%時反而降至3.0 eV。電阻率在Al摻雜後有降低的趨勢,以陽極電壓700 V沉積之薄膜由40 kΩ•cm降至1.5 kΩ•cm,以陽極電壓1000 V沉積則由10 kΩ•cm降至1 kΩ•cm。


In this study, silver oxide and Al doped silver oxide thin films were deposited by reactive ion beam sputter deposition using various ion beam energy and oxygen partial flow rates (Opf). Experimental results show that single phase Ag2O can be successfully prepared utilizing an anode voltage of 700 V with an Opf = 100% at 200°C. Increasing the anode voltage to 1000 V with Opf = 100% at 200°C results in the formation of single phase AgO. Samples deposited with anode voltage of 1500 V are mixed AgO and Ag2O. With Opf less than 80% or with deposition temperature higher than 200°C, silver is always present in the thin film, indicating incomplete oxidation of silver. After Al is doped into silver oxide with Ag2O deposition condition, XRD analysis indicates that with the introduction of Al, the grain size of Ag2O increases from 4.2 to 17.9 nm. After Al is doped into silver oxide with AgO deposition condition, the AgO transform into Ag2O and the diffraction peak of Ag2O (111) shifts from 32.96°to 33.06°, indicating the Al3+ successfully replaced Ag3+. Raman analysis indicates silver carbonate at 700, 780, 810 and 930 cm-1, indicating the presence of carbon dioxide adsorption on the surface of the sample. Both Ag2O and AgO exhibit a direct band gap property with the value of 3.0 and 2.9 eV, respectively. As Al concentration increases from 0.0 at.% to 4.7 at.%, the band gap of Al:Ag2O increases from 3.0 to 3.2 eV, then decreases to 3.0 eV as Al reaches 6.0 at.%. Al doped Ag2O shows decrease of resistivity as Al concentration increases. When introduce Al into thin film, the resistivity decrease from 40 kΩ•cm to 1.5 kΩ•cm with anode voltage 700 V, and also decrease from 10 kΩ•cm to 1 kΩ•cm with anode voltage 1000 V.

中文摘要 Abstrate 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機與目的 第二章 文獻回顧 2.1 離子束濺鍍原理 2.1.1 濺鍍原理 2.1.2 離子束濺鍍原理 2.1.3 離子束濺鍍之優點 2.1.4 反應式濺鍍 2.2 薄膜成長理論 2.2.1 薄膜成核與成長 2.3 AgxO、AgAlO2結構和特性簡介 2.3.1 AgxO簡介 2.3.2 AgxO相位與溫度的關係 2.3.3 AgAlO2簡介 2.3.4 CMVB原理介紹 2.3.5 AgxO之文獻探討 2.3.6 AgAlO2之文獻探討 第三章 實驗步驟與量測方法 3.1 實驗設備及流程 3.1.1 陽極層離子源 3.2 特性分析儀器 3.2.1 場發射掃描式電子顯微鏡 (Field emission scanning electron microscopy, FE-SEM) 3.2.2 X光繞射分析儀 (X-ray diffraction, XRD) 3.2.3 拉曼光譜法 (Micro-Raman spectroscopy) 3.2.4 四點探針量測 (Four-point probe measurement) 3.2.5 穿透率量測 第四章 實驗結果與討論 4.1 X-ray繞射儀分析 4.1.1 不同氧氣分壓、陽極電壓及溫度下沉積變化 4.1.2 不同氧氣分壓、陽極電壓及溫度下沉積變化 4.1.3 Al摻質對不同氧化態之相位及結晶變化 4.2拉曼光譜分析 4.3場發射掃描式電子顯微鏡(FE-SEM)分析 4.3.1不同氧氣分壓、陽極電壓及Al摻雜面積之沉積變化 4.3.2 Al摻質對不同氧化態之表面形貌及EDS變化 4.4穿透率分析 4.4.1不同氬氧比下沉積AgxO薄膜之穿透率 4.4.2不同陽極電壓下沉積AgxO薄膜 4.4.3 Al摻質對不同氧化態之穿透率變化 4.5電性分析 第五章 結論與未來展望 參考文獻

[1] A.N. Banerjee , K.K. Chattopadhyay, “Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films,” Prog Cryst. Growth Charact. Mater. vol. 50, pp. 52-105, 2005.
[2] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi & H. Hosono, “P-type electrical conduction in transparent thin films of CuAlO2,” Nature, vol. 389, no. 30 October 1997.
[3] S. Ouyang, N. Kikugawa, D. Chen, Z. Zou, and J. Ye, “A Systematical Study on Photocatalytic Properties of AgMO2 (M = Al, Ga, In): Effects of Chemical Compositions, Crystal Structures, and Electronic Structures,” J. Phys. Chem. C, vol. 113, pp. 1560-1566, 2009.
[4] S. Ouyang, H. Zhang, D. Li, T. Yu, J. Ye and Z. Zou, “Electronic Structure and Photocatalytic Characterization of a Novel Photocatalyst AgAlO2,” J. Phys. Chem. B, vol. 110, no. 24, pp. 11677-11682, 2006.
[5] D. Xiong, X. Zeng, W. Zhang, H. Wang, X. Zhao, W. Chen and Y.B. Cheng, “Synthesis and Characterization of CuAlO2 and AgAlO2 Delafossite Oxides through Low-Temperature Hydrothermal Methods,” Inorg. Chem, vol. 53, pp. 4106-4116, 2014.
[6] W. R. Grove, “On the electro-chemical polarity of gases,” Phil. Trans. Roy. Soc., vol. 142, pp. 87-101, 1852.
[7] C. C. Lee, D. T. Wei, J. C. Hsu, and C. H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films, vol. 290-291, pp. 88-93, 1996.
[8] M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films, vol. 117, pp. 163-172, 1984.
[9] C. C. Lee, J. C. Hsu, D. T. Wei, and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, vol. 308-309, pp. 74-78, 1997.
[10] S. M. Kane, and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., vol. 16, no. 2, pp. 171-174, 1979.
[11] S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., vol. 71, no. 1, pp. 376-388, 1992.
[12] C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci., vol. 171, no. 1-2, pp. 151-156, 2001.
[13] L. Davis, “Properties of transparent conducting oxides deposited at room Temperature,” Thin Solid Films, vol. 236, no. 1-2, pp. 1-5, 1993.
[14] C. Argile, G. E. Rhead, “Absorbed layer and thin film growth modes monitored by augur electron spectroscopy,” Surf. Sci. Rep., vol. 10, no. 6-7, pp. 277-356, 1989.
[15] K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic thin film science,” Macmillan Publishing Co., New York, p. 428, 1992.
[16] M. Ohring, “The materials science of thin films,” Academic Press, Boston, p.197, 1992.
[17] Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka, and M. Izaki, “Direct electrodeposition of 1.46 eV bandgap silver(I) oxide semiconductor films by electrogenerated acid,” Chem. Mater., vol. 20, pp. 1254-1256, 2008.
[18] Y. Abe, T. Hasegawa, M. Kawamura, and K. Sasaki, “Characterization of Ag oxide thin films prepared by reactive RF sputtering,” Vacuum., vol. 76, no. 1, pp. 1-6, 2004.
[19] L. H. Tjeng, M. B. J. Meinders, J. V. Elp, J. Ghijsen, and G. A. Sawatzky, “Electronic structure of Ag2O,” Phys. Rev. B, vol. 41, no 5, pp. 3190-3199, 1990.
[20] P. Norby, R. Dinnebier, and A. N. Fitch, “Decomposition of silver carbonate; the crystal structure of two high-temperature modifications of Ag2CO3,” Inorg. Chem., vol. 41, pp. 3628-3637, 2002.
[21] V. Scatturin, P. L. Bellon, and A. J. Salkind, ”The structure of silver oxide determined by means of neutron diffraction,” J. Electrochem. Soc., vol. 108, no. 9, pp. 819-822, 1961.
[22] M. Bielmann, P. Schwaller, P. Ruffieux, O. Gröning, L. Schlapbach, and P. Gröning, “AgO investigated by photoelectron spectroscopy: Evidence for mixed valence,” Phys. Rev. B, vol. 65, no. 23, pp. 54311-54315, 2002.
[23] J. P. Allen, D. O. Scanlon, and G. W. Watson, “Electronic structure of mixed-valence silver oxide AgO from hybrid density-functional theory,” Phys. Rev. B, vol. 81, no. 16, pp. 1103-1106, 2010.
[24] K. Yvon, A. Bezinge, P. Tissot, and P. Fischer, “Structure and magnetic properties of tetragonal silver(I,III) oxide, AgO,” J. Solid State Chem., vol. 65, no. 2, pp. 225-230, 1986.
[25] J. H. Qiu, P. Zhou, X. Y. Gao, J. N. Yu, S. Y. Wang, J. Li, Y. X. Zheng, Y. M. Yang, Q. H. Song, and L. Y. Chen, “Ellipsometric study of the optical properties of silver oxide prepared by reactive magnetron sputtering,” J. Korean Phys. Soc., vol. 46, pp. 269-275, 2005.
[26] X. Y. Gao, S. Y. Wang, J. Li, Y. X. Zheng, R. J. Zhang, P. Zhou, Y. M. Yang, and L. Y. Chen, “Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods,” Thin Solid Films, vol. 455-456, pp 438-442, 2004.
[27] X. Y. Gao, H. L. Feng, J. M. Ma, Z. Y. Zhang, J. X. Lu, Y. S. Chen, S. E. Yang, and J. H. Gu, “Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-Oscillator model,” Phys. Rev. B, vol. 405, no. 7, pp. 1922-1926, 2010.
[28] X. Y. Gao, H. L. Feng, J. M. Ma, and Z. Y. Zhang, “Spectroscopic ellipsometricstudy of the optical properties of Ag2O film prepared by direct-current magnetron reactive sputtering,” Chin. Phys. B, vol. 19, no. 9, pp. 291-296, 2010.
[29] X. Y. Gao, H. L. Feng, Z. Y. Zhang, J. M. Ma, and J. X. Lu, “Effect of rapid thermal processing on the microstructure and optical properties of as-deposited Ag2O film by direct current reactive magnetron sputtering,” Chin. Phys. Lett., vol. 27, no. 2, pp. 6804-6807, 2010.
[30] J. P. Doumerc, A.Ammar, A. Wichainchai, M. Pouchard, and P. Hagenmuller, “Surquelques nouveaux composes de structure de type delafossite,” J. Phys. D: Appl. Phys., vol. 48, 1987, pp. 37-43.
[31] H. Kawazoe, H. Yanagi, K. Ueda, and H.Hosono,“Transparent p-type conducting oxide: design and fabrication of p-n heterojunctions,” MRS Bull, vol. 25, pp. 28, 2000.
[32] U. K. Barik, S. Srinivasan, C. L. Nagendra, and A. Subrahmanyam, “Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen,” Thin Solid Films, vol. 429, no. 1-2, pp. 129-134, 2003.
[33] J. F. Pierson, D. Wiederkehr and A. Billard, “Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Films, vol. 478, no. 1-2, pp. 196-205, 2005.
[34] S. B. Rivers, G. Bernhardt, M. W. Wright, D. J. Frankel, M. M. Steeves and R. J. Lad, “Structure, conductivity, and optical absorption of Ag2−xO films,” Thin Solid Films, vol. 515, no. 24, pp. 8684-8688, 2007.
[35] X. Y. Gao, Z. Y. Zhang, J. M. Ma, J. X. Lu, J. H. Gu and S. E. Yang, “Effects of the sputtering power on the crystalline structure and optical properties of the silver oxide films deposited using direct-current reactive magnetron sputtering,” Chin. Phys. B, vol. 20, no. 2, 2011.
[36] H. J. Kim, J. W. Bae, J. S. Kim, K. S. Kim, Y. C. Jang, G. Y. Yeom, and N. E.Lee, “Electrical, optical, and structural characteristics of ITO thin films by krypton and oxygen dual ion-beam assisted evaporation at room temperature,” Thin Solid Films, vol. 377-378, pp. 115-121, 2000.
[37] J. Tauc, R. Griogorovici, and A. Vaucu, “Optical properties and electronic structure of amorphous germanium,” Phys. Stat. Sol., vol. 15, no. 2, pp. 627-637, 1966.
[38] G. I. N. Waterhouse, G. A. Bowmaker and J. B. Metson, “The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study,” Phys. Chem. Chem. Phys., vol. 3, pp. 3838-3845, 2001.
[39] N. Ravi Chandra Raju, K. J. Kumar and A. Subrahmanyam, “Silver oxide (AgO) thin films for Surface Enhanced Raman Scattering (SERS) studies” in Proc. AIP Conf., vol. 1267, Boston. MA, August 2010, pp. 1005-1006.

無法下載圖示 全文公開日期 2021/06/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE