簡易檢索 / 詳目顯示

研究生: 趙祐陞
Yu-Sheng Chao
論文名稱: MIMO LTI系統之強健輸出回授追蹤控制器設計
Robust Output Feedback Tracking Controller Design of MIMO LTI systems
指導教授: 黃安橋
An-Chyau Huang
口試委員: 林紀穎
Chi-Ying Lin
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 51
中文關鍵詞: 多輸入多輸出強健控制輸出回授觀察器
外文關鍵詞: Multi-Input Multi-Output, Robust Control, Output Feedback, Observer
相關次數: 點閱:226下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在自動控制領域中,對於一個符合可控條件的線性非時變系統,若要處理讓系統狀態回到原點之問題(regulation problem),最經典的設計方法即為極點配置法。其利用狀態回授的方式,將極點放置在任何期望的位置上,使系統狀態漸近收斂到原點。若要進行追蹤控制(tracking problem),必需在狀態回授控制器裡,加入一個追蹤項。但傳統上,其只可確保非零常數訊號的追跡,對於時變訊號,則會有明顯的相位差產生。本文針對線性非時變系統,探討其追蹤問題,並提出一追蹤控制器,其即使對快速時變訊號,也沒有相位差問題。
以上設計是考慮系統並無受到外擾的狀況下,若系統包含外擾,其設計就相當有挑戰性了。本文進一步對具有匹配式外擾的線性非時變系統,提出追蹤控制器,其中使用滑動控制的概念來容忍外擾的影響,讓系統狀態皆能收斂到時變的期望軌跡。
當系統狀態無法得知,上述的控制方法都無法實現。可建構觀察器來估測系統狀態,並使用估測的狀態計算控制量,以達到控制目的。由於在系統受到外擾下設計控制器就已非常不易,若系統狀態又無法得知,在加入觀察器後,其控制器設計難度會大幅增加。如果再將其設計擴展到多輸入多輸出系統,必然更是困難重重。最後,本文針對多輸入多輸出線性非時變系統,結合狀態觀察器,設計一強健追蹤控制器,來容忍外擾的影響,以達到漸進收斂的性能。其中利用Lyapunov穩定度法則來證明其系統穩定性,並以電腦模擬驗證此控制法為可行。


For a completely controllable LTI system, the pole placement design is perhaps the most renowned control method for regulation problems. It allows the closed loop poles to be placed at desired locations by full state feedback so that the system states may converge to the origin asymptotically. As for the tracking problems, an additional term should be included in the controller to provide sufficient driving activities. However, it is only valid for the tracking of step signals, and a significant lag can be observed for the tracking of a time-varying trajectory. In this thesis, the tracking problem is studied in detail for a LTI system and a state feedback tracking controller is proposed so that the states may follow fast time-varying trajectories asymptotically.
The above designs are under the disturbance-free condition. With the presence of external disturbances, the problem becomes challenging. This thesis further proposes a tracking controller for a LTI system subject to matched disturbances. A robust term based on the sliding control is introduced to tolerate the effect of the disturbances so as to give convergence of the system states to the desired trajectories.
If the states are not available, the above strategies are not feasible. The observers can thus be constructed to estimate the system states so that we may replace the actual states in the controller by using these estimates. However, inclusion of the state observer will further complicate the design and the controller derivation becomes more difficult. If the structure is extended to MIMO systems, the development is extremely complex. Finally, this thesis proposes a robust tracking controller for a MIMO LTI system based on state observers to tolerate external disturbances. The Lyapunov theory is utilized to prove system stability and computer simulations are performed to justify feasibility of the designs.

摘要 I Abstract II 目錄 III 圖目錄 IV 第一章 緒論 1 第二章 LTI系統之追跡控制器設計 5 2.1目標為非零常數之追跡控制 5 2.2目標為時變函數之追跡控制 11 第三章 LTI系統之強健狀態回授控制器設計 18 3.1目標為系統狀態回到原點之強健控制 18 3.2目標為時變函數之強健追跡控制 23 第四章 LTI系統之強健輸出回授控制器設計 29 4.1目標為系統狀態回到原點之強健控制 29 4.2目標為時變函數之強健追跡控制 37 第五章 結語與未來展望 46 參考文獻 47 附錄 51

[1] N. S. Nise, Control System Engineering, 4th ed., John-Wiley Sons, 2004.

[2] B. C. Kuo and F. Golnaraghi, Automatic Control Systems, 8th ed., Wiley, 2002.

[3] R. L Williams and D. A. Lawrence, Linear State-Space Control Systems, John-Wiley Sons, 2007

[4] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, New Jersey: Prentice-Hall, 1991.

[5] D. Luenberger, “Observing the state of a linear system,” IEEE Transactions on Military Electronics, vol. 8, no. 2, pp. 74-80, 1964.

[6] D. Luenberger, “Observers for multivariable systems,” IEEE Transactions on Automatic Control, vol. 11, no. 2, pp. 190-197, 1966.

[7] S. Gutman and G. Leitmann, “On a class of linear differential games,” Journal of Optimization Theory and Applications, vol. 17, pp. 511-522, 1975.

[8] G Leitmann, “Guaranteed ultimate boundedness for a class of uncertain linear dynamical systems,” IEEE Transactions on Automatic Control, vol. 23, no. 6, pp. 1109-1110, 1978.

[9] G. Leitmann, “Guaranteed asymptotic stability for some linear systems with bounded uncertainties,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 101, pp. 212-216, 1979.

[10] B. R. Barmish, M. Corless, and G. Leitmann, “A new class of stabilizing controllers for uncertain dynamical systems,” SIAM Journal on Control and Optimization, vol. 21, pp. 246-255, 1983.

[11] S Gutman, “Uncertain dynamical systems--A Lyapunov min-max approach,” IEEE Transactions on Automatic Control, vol. 24, no. 3, pp. 437-443, 1979.

[12] M. Corless and G. Leitmann, “Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE Transactions on Automatic Control, vol. 26, pp.1139-1144, 1981.

[13] M. Hached, S. M. Madani-Esfahani, and S. H. Zak, “Stabilization of uncertain systems subject to hard bounds on control with application to a robot manipulator,” IEEE Transaction on Robotics and Automation, vol. 4, no. 3, pp. 310-323, 1988.

[14] Z. Qu, “Asymptotic stability of controlling uncertain dynamical systems,” International Journal of Control, vol. 59, pp.1345-1355, 1994.

[15] Z. Qu and D. M. Dawson, “Continuous state feedback control guaranteeing exponential stability for uncertain dynamical systems,” The 30th IEEE Conference on Decision and Control, pp. 2636-2638, 1991.

[16] H. Wu and K. Mizukami, “Exponential stability of a class of nonlinear dynamical systems with uncertainties,” System and Control Letters, vol. 21, pp. 307-313, 1993.

[17] B. R. Barmish and G. Leitmann, “On ultimate boundedness control of uncertain systems in the absence of matching assumptions,” IEEE Transactions on Automatic Control, vol. 27, pp. 153-158, 1982.

[18] B. Xian, D. M. Dawson, M. S. de Queiroz, and J. Chen, “A continuous asymptotic tracking control strategy for uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 49, pp. 1206-1211, 2004.

[19] J. Chen, A. Behal, and D. M. Dawson, “Robust feedback control for a class of uncertain MIMO nonlinear systems.” IEEE Transactions on Automatic Control, vol. 49, pp. 591-596, 2008.

[20] B. Walcott and S. H. Zak, “State observation of nonlinear uncertain dynamical systems,” IEEE Transactions on Automatic Control, vol. 32, no. 2, pp. 166-170, 1987.

[21] B. Walcott and S. H. Zak, “Combined observer-controller synthesis for uncertain dynamical systems with applications,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 88-104, 1988.

[22] F. Jabbari and W. E. Schmitendorf, “Effects of using observers on stabilization of uncertain linear systems,” IEEE Transactions on Automatic Control, vol.38, no. 2, pp. 266-271, 1993.

[23] F. Jabbari and W. E. Schmitendorf, “Robust linear controllers using observers,” IEEE transactions on Automatic Control, vol. 36, no. 12, pp. 1509-1514, 1991.

[24] B. Walcott and S. H. Zak, “Observation of dynamical systems in the presence of bounded nonlinearities/uncertainties,” The 25th IEEE Conference on Decision and Control, pp. 961-966, 1986.

[25] D. M. Dawson, Z. Qu, and J. C. Carroll, “On the state observation and output feedback problems for nonlinear uncertain dynamic systems,” Systems & Control Letters, vol. 18, no. 3, pp. 217-222, 1992.

[26] S. H. Zak, “On the stabilization and observation of nonlinear/uncertain dynamic systems,” IEEE Transactions on Automatic Control, vol. 35, no. 5, pp. 604-607, 1990.

[27] S. H. Zak and S. Hui, “Output feedback variable structure controllers and state estimators for uncertain/nonlinear dynamic systems,” IEE Proceedings D: Control Theory and Applications, vol. 140, no. 1, pp. 41-50, 1993.

[28] H. B. Shin, K. Y. Cho, and M. J. Youn, “Variable structure observer of mismatched uncertain dynamical systems,” Electronics Letters, vol. 27, no. 20, pp. 1798-1800, 1991.

[29] Y. M. Cho and R. Rajamani, “A systematic approach to adaptive observer synthesis for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 42, no. 4, pp. 534-537, 1997.

[30] Y. Xiong and M. Saif, “Sliding mode observer for nonlinear uncertain systems,” IEEE Transactions on Automatic Control, vol. 46, no. 12, pp. 2012-2017, 2001.

[31] K. C. Veluvolu, Y. C. Soh, and W. Cao, “Robust observer with sliding mode estimation for nonlinear uncertain systems,” IET Control Theory & Applications, vol. 1, no. 5, pp. 1533-1540, 2007.

[32] V. Stepanyan and N. Hovakimyan, “Robust adaptive observer design for uncertain systems with bounded disturbances,” The 44th IEEE Conference on Decision and Control, pp. 7750-7755, 2005.

[33] J. L. Chang, “Robust discrete-time model reference sliding-mode controller design with state and disturbance estimation,” IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 4065-4074, 2008.

[34] S. Tong, Y. Li, and P. Shi, “Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 4, pp. 771-785, 2012.

[35] M. M. Arefi, M. R. Jahed-Motlagh, and H. R. Karimi, “Adaptive neural stabilizing controller for a class of mismatched uncertain nonlinear systems by state and output feedback,” IEEE Transactions on Cybernetics, vol. 45, no. 8, pp. 1587-1596, 2014.

[36]楊育瑋, 多輸入多輸出線性系統之滑動追蹤控制器設計, 國立臺灣科技大學機械工程研究所, 碩士學位論文, 2019.

[37] A. Steinberg and M. Corless, “Output feedback stabilization of uncertain dynamical systems,” IEEE Transactions on Automatic Control, vol. 30, no. 10, pp. 1025-1027, 1985.

[38] G. Gu, “Stabilizability conditions of multivariable uncertain systems via output feedback control,” IEEE Transactions on Automatic Control, vol. 35, no. 8, pp. 925-927, 1990.

QR CODE