簡易檢索 / 詳目顯示

研究生: 蕭博仁
Bo-Ren Hsiao
論文名稱: 通用於手持裝置之全頻段行動通訊及雙頻無線區域網路天線設計
Designs of Broadband mobile communication and dual band WLAN Antennas for handheld Devices
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 施家頤
Jia-yi Sze
楊成發
Chang-Fa Yang
馬自莊
Tzyh-Ghuang Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 內藏式天線耦合式饋入多天線系統長期演進技術多輸入多輸出倒F天線
外文關鍵詞: internal antennas, coupled feeds, multi-antenna ststem, long term evolution, MIMO, inverted-F antenna
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新近推出的各式行動裝置平台,像是平板電腦、智慧型手機等,皆須整合多種無線通訊協定,沿生內藏式多頻段操作的天線需求,本篇論文中,提出三款應用於不同行動平台之內藏式天線設計。並且將天線結構加以解析,以達到系統化分析及提供調整機制之需求。
    本論文的第一部分,為一應用於無線接取器之WLAN雙頻帶四天線系統,天線結構由倒F天線與迴圈天線組合而成,整體結構為全平面形式,符合實際內藏應用。為搭配MIMO技術,我們將單一天線各別擺置系統平台之四個角落,天線之間的耦合量小,且不影響彼此的操作模態,而利用輻射場型評估此四天線系統之分集效能,也顯示有良好的效果。
    第二款設計為應用於10吋平板之耦合饋入式LTE全頻帶天線設計,裝置於10吋平板電腦平台上,單一天線占用面積為40 × 10 mm2,整體結構為全平面形式。天線可涵蓋LTE/WWAN八個頻帶,其低頻模態是由耦合饋入方式。可藉由調整饋入帶線與由地板延伸之寄生元件的間距,產生寬頻模態響應;而高頻頻段則是由寄生元件與饋入帶線之高頻模態響應合成,透過實作及量測,也驗證此天線在4G頻帶內皆有良好的匹配以及輻射效能。
    第三款天線則是適用於各式尺寸平板之LTE全頻帶IFA天線,天線尺寸為53.5 × 10 mm2,其結構為全平面形式,所採用之系統平台尺寸為170 × 100 mm2,此天線分別針對低、高頻帶做設計,且頻帶之間擁有相當良好的隔離度,具有良好的可調整性,且天線在7吋系統平台上具有良好的匹配特性與輻射特性,該天線設計也可適用於其他尺寸之通訊產品。


    Modern mobile devices, such as tablet PCs and smart phones, need to be integrated with various kinds of communication protocols. In this paper, three kinds of internal antenna designs for different application platforms are proposed. By decomposing the antenna structure and performing parametric analyses, systematic design and characteristics tuning methods can be acquired.
    First part of this paper is a dual band WLAN 2.4/5 GHz four antenna system for access point devices. The antenna design integrates on inverted-F antenna and a loop antenna. The antenna structure is planar, which is suitable for practical applications. To support MIMO uses, we arrange the four element antennas at corners of the system platform. The couplings between antennas are small and each element antenna retains original performance. Measured fields are used to evaluate and verify that this four-antenna system's superior diversity performance.
    In the second part, an LTE/WWAN antenna design for 10-inch tablet is proposed. The antenna is planar and its footprint is 40 × 10 mm2 only. By employing a coupled-feed and adjusting the gap between the feeding strip line and the parasitic element extended from the ground plane, a broad operation band can be achieved in the lower LTE band. The higher band is generated from higher resonant modes of the feeding strip line and the parasitic element. Through fabrication and measurement, good matching and radiation performance features are validated.
    The third part proposes an LTE/WWAN band antenna used for 7 inch tablet. The antenna size is 53.5 × 10 mm2. The lower and higher bands are designed respectively. With good isolation performance between the two bands, ease of tuning can be achieved. Because of good operation features of the proposed design on the 7 inches platform. This antenna is also suitable for other mobile handset with different size.

    摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第1章 第一章 緒論 1 1.1. 研究背景與動機 1 1.2. 論文組織 2 第2章 第二章 應用於無線接取器之WLAN 雙頻帶四天線設計 3 2.1. 前言 3 2.2. 天線結構與設計原理 5 2.2.1 單一天線結構設計 5 2.2.2 單一天線結構之演進 6 2.2.3 天線參數分析 8 2.2.4 MIMO四天線系統佈置效能 11 2.3. 四天線系統實作及效能驗證 13 2.4. 小結 20 第3章 第三章 應用於10吋平板電腦之LTE全頻帶耦合饋入式天線 21 3.1. 前言 21 3.2. 天線設計 23 3.2.1 天線結構 23 3.2.2 天線結構之演進 25 3.2.3 天線參數分析 32 3.3. 天線之效能驗證 39 3.4. 多天線配置 44 3.5. 小結 47 第4章 第四章 適用於各式尺寸平板之LTE全頻帶IFA天線 48 4.1. 前言 48 4.2. 天線設計 50 4.2.1. 天線結構 50 4.2.2. 天線結構之演進 52 4.2.3. 天線參數分析 57 4.3. 實作天線之匹配與輻射特性驗證 63 4.4. 小結 68 第5章 第五章 結論 69 5.1. 總結 69 5.2. 未來發展 70 參考文獻 71

    [1] K.-L. Wong and C.-H. Chang, “Surface-mountable EMC monopole chip antenna for WLAN operation,” IEEE Trans. Antennas Propag., vol. 54, no. 4, pp. 1100-1104, Apr. 2006.
    [2] Q. Luo, J. R. Pereira, and H. M. Salgado, “Compact printed monopole antenna with chip inductor for WLAN,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 880-883, Sep. 2011.
    [3] C. H. See, R. A. Abd-Alhameed, D. Zhou, and P. S. Excell, “Dual-frequency planar inverted F-L-Antenna (PIFLA) for WLAN and short range communication systems,” IEEE Trans. Antennas Propag., vol. 56, no. 10, pp. 3318-3320, Oct. 2008.
    [4] H.-W. Liu, S.-Y. Lin, and C.-F. Yang, “Compact inverted-F antenna with meander shorting strip for laptop computer WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 540-543, May 2011.
    [5] S.-W. Su and C.-T. Lee, “Printed, low-cost, dual-polarized dual-loop-antenna system for 2.4/5 GHz WLAN access points, " in 5th Eur. Conf. on Antennas and Propag., pp. 1253-1257, Apr. 2011.
    [6] W.-J. Liao, C.-Y. Hsieh, B.-Y. Dai, and B.-R. Hsiao, “Inverted-F/slot integrated dual-band four-antenna system for WLAN access points,”IEEE Antennas Wireless Propag. Lett. , vol. 14, , pp. 847-850, 2015.
    [7] Y.-K. Shih, W.-J. Liao, S.-H. Chang, P.-C. Chiang, C.-T. Yeh, and T.-G. Ma, “A four element antenna system with antenna diversity for dual band WLAN operation, ”in Proc. Int. Symp. on Electromagnetic Theory, pp. 679-682, May 2013.
    [8] V. Plicanic, Antenna Diversity Studies and Evaluation, Master of Science Thesis, Lund University, Sweden, 2004.
    [9] 智慧機普及率, 財團法人資訊工業策進會, [Online], Available http://www.iii.org.tw/.
    [10] J.-W. Kim, T.-H. Jung, H.-K. Ryu, J.-M. Woo, C.-S. Eun, and D.-K. Lee, “Compact multiband microstrip antenna using Inverted-L- and T-shaped parasitic elements," IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1299-1302, 2013.
    [11] F.-H. Chu and K.-L. Wong, “Planar printed strip monopole with a closely-coupled parasitic shorted strip for eight-band LTE/GSM/UMTS Mobile Phone,” IEEE Trans. Antennas Propag., vol. 58, no.10, pp. 3426-3431, Oct. 2010.
    [12] C.-T. Lee and K.-L. Wong, “Planar monopole with a coupling feed and an inductive shorting strip for LTE/GSM/UMTS operation in the mobile phone,” IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2479-2483, Jul. 2010.
    [13] A. Cabedo, J. C. Anguera, Picher, M. Ribo, and C. Puente, , “Multiband handset antenna combining a PIFA, slots, and ground Plane modes,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2526-2533, Sep. 2009.
    [14] D.-B. Lin, I-T. Tang, M.-Z. Hong, and H.-P. Lin, “A compact quad-band PIFA by using defected ground structure,” in IEEE Ant. Propag. Society Int. Symp., pp. 4677-4680, Jun. 2007.
    [15] Y.-X. Guo, I. Ang, and M.Y.W. Chia, “Compact internal multiband antennas for mobile handsets,” IEEE Antennas Wireless Propag. Lett , vol. 2, pp. 143-146, 2003.
    [16] K. L. Wong and T.-W. Weng, “Small-size triple-wideband LTE/WWAN tablet device antenna,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1516–1519, 2013.
    [17] Y. L. Ban, S. C. Sun, J. L. W. Li, and W. Hu, “Compact coupled-fed wideband antenna for internal eight-band LTE/WWAN tablet computer applications,” Journal of Electromagentic Waves and Applications, vol.26, pp. 2222-2233, 2012.
    [18] F. H. Chu and K. L. Wong, “Internal coupled-fed dual-loop antenna integrated with a USB connector for WWAN/LTE mobile handset,” IEEE Trans. Antennas Propag., vol. 59, no. 11, pp. 4215–4221, Nov. 2011.
    [19] Y. L. Ban, C.-L. Liu, J. L.-W. Li, K. Guo, and Y. Kang, “Small-size coupled-fed antenna with two printed distributed inductors for seven-band WWAN/LTE mobile handset,” IEEE Trans. Antennas Propag., vol. 61, no. 11, pp. 5780–5784, Nov. 2013.
    [20] J.-H. Lu and Y.-S. Wang, “Planar small-size eight-band LTE/WWAN monopole antenna for tablet computers,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 4372–4377, Aug. 2014.
    [21] K. R. Boyle, P. G. Steeneken, , “A five-band reconfigurable PIFA for mobile phones,” IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 3300-3309, Nov. 2007.
    [22] Y.-L. Ban, S.-C. Sun, P.-P. Li, J. L.-W. Li, and K. Kang, “Compact eight-band frequency reconfigurable antenna for LTE/WWAN tablet computer applications,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 451–475, Jan. 2014.
    [23] Y.-L. Ban, Z. X. Chen, Z. Chen, K. Kang, and J. L.-W. Li, “Reconfigurable narrow-frame antenna for heptaband WWAN/LTE smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 13,pp. 1365–1368, 2014.
    [24] Datasheet of muRata RF Inductor LQG15H, [Online]. Available: http://psearch.en.murata.com/inductor/result/
    [25] 4G服務帶動創新應用大未來, [Online], Available http://www.ithome.com.tw/
    [26] P. Vainikainen, J. Ollikainen, O. Kivekas, and I. Kelander, , “Resonator-based analysis of the combination of mobile handset antenna and chassis," IEEE Trans. Antennas Propag., vol. 50, no. 10, pp. 1433-1444, Oct. 2002.
    [27] J. Villanen, J. Poutanen, C. Icheln, P. Vainikainen, , “A wideband study of the bandwidth, SAR and radiation efficiency of mobile terminal antenna structures," in Proc. IEEE Int. Workshop on Ant. Tech., pp. 49-52, Mar. 2007.
    [28] 陳羿安, 適用於行動裝置的多頻/寬頻/頻段可重置天線設計, 國立臺灣科技大學電機工程研究所, 碩士論文, 民國104年
    [29] Datasheet of muRata Monolithic Ceramic Capacitor, GSM0222 [Online]. Available: http://psearch.en.murata.com/capacitor/result/smd/

    無法下載圖示 全文公開日期 2020/07/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE