簡易檢索 / 詳目顯示

研究生: 張雅涵
Ya-Han Chang
論文名稱: 多輸入多輸出線性系統之強健狀態回授追蹤控制器設計
Robust State Feedback Tracking Controller Design of Multi-Input Multi-Output Linear Systems
指導教授: 黃安橋
An-Chyau Huang
口試委員: 陳亮光
Liang-Kuang Chen
藍振洋
Jhen-Yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 47
中文關鍵詞: 多輸入多輸出系統匹配式干擾強健控制追跡控制狀態回授極點配置法
外文關鍵詞: MIMO system, LTI system, SMC(sliding mode control), Robust Control, matched disturbances, state feedback controller, pole placement control
相關次數: 點閱:213下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MIMO LTI系統的regulation已是習用技術,即使系統含有未知項,也有諸多策略可達到控制目的。但是,該類系統的追蹤問題,除了特殊方法外,文獻中並未見到廣泛的探討;一旦同時考量未知項的影響,其在文獻中幾乎絕蹤。本文針對含有匹配式干擾之MIMO LTI系統的追跡問題,提出一強健追蹤控制器,其中利用極點配置法,來安排閉迴路系統的動態行為;再用滑動控制,以解決不確定項的影響。推導過程以Lyapunov理論來確保追蹤誤差的漸進收斂性,並透過電腦模擬,來驗證本文所提控制器的可行性。


    The regulation of MIMO LTI systems is a well-known technique even for the systems with various uncertainties. However, except for some special strategies, the tracking problem attracts much less attention in the literature. This thesis presents a solution to the robust tracking problem for MIMO LTI systems with matched uncertainties. The pole placement state feedback controller is utilized to give a proper closed loop dynamics, while the sliding control design is employed to provide robust effort to tolerate the uncertainties. The closed loop stability is justified by the Lyapunov theory via rigorous mathematical derivations. Computer simulations are performed to show the efficacy of the proposed scheme.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 V 第一章 緒論 1 第二章 MIMO狀態回授控制器設計 5 2.1 目標為零狀態回授控制(極點配置法) 5 2.2 目標為時變函數之狀態回授追跡控制 7 第三章 MIMO強健調節控制器設計 10 3.1 含匹配式干擾之MIMO LTI系統模型 10 3.2 強健調節控制設計(方法一) 11 3.3 強健調節控制設計(方法二) 17 第四章 MIMO強健追蹤控制器設計 22 4.1 含匹配式干擾之MIMO LTI系統模型 22 4.2 目標為時變函數的滑動追跡控制(方法一) 24 4.3 目標為時變函數的滑動追跡控制(方法二) 29 第五章 結論 34 參考文獻 35 附錄 38

    [1] J.-J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall, Englewood Cliffs, NJ, 1991.
    [2] R. L. Williams and D. A. Lawrence, Linear state-space control systems, John Wiley & Sons, 2007.
    [3] B. C. Kuo and F. Golnaraghi, Automatic Control Systems, 8th ed., Wiley, 2002.
    [4] N. S. Nise, Control system engineering, John Wiley & Sons, 2011.
    [5] D. Xue, Y. Q. Chen, and D. P. Atherton, Linear feedback control: analysis and design with MATLAB, Society for Industrial and Applied Mathematics, 2007.
    [6] P. A. Ioannou and J. Sun, Robust adaptive control, Prentice Hall, 2012.
    [7] V. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, pp. 212-222, 1977.
    [8] C. Edwards and S. Spurgeon, Sliding mode control: theory and applications, CRC Press, 1998.
    [9] S. Gutman and G. Leitmann, “Stabilizing control for linear systems with bounded parameter and input uncertainty,” IFIP Conference on Optimization Techniques, pp. 729-755, 1975.
    [10] S. Gutman and G. Leitmann, “Stabilizing feedback control for dynamical systems with bounded uncertainty,” IEEE Conference on Decision and Control, pp. 94-99, 1976.
    [11] S. Gutman, and G. Leitmann, “On a class of linear differential games,” Journal of Optimization Theory and Applications, vol. 17, no. 5-6, pp. 511-522, 1975.
    [12] G. Leitmann, “Guaranteed asymptotic stability for some linear systems with bounded uncertainties” Journal of Dynamic Systems, Measurement, and Control, vol. 101, pp. 212-216, 1979.
    [13] S. Gutman, “Uncertain dynamical systems--A Lyapunov min-max approach,” IEEE Transactions on Automatic Control, vol. 24, no. 3, pp. 437-443, 1979.
    [14] M. Corless and G. Leitmann, “Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE Transactions on Automatic Control, vol. 26, pp.1139-1144, 1981.
    [15] B. R. Barmish, M. Corless, and G. Leitmann, “A new class of stabilizing controllers for uncertain dynamical systems,” SIAM Journal on Control and Optimization, vol. 21, pp. 246-255, 1983.
    [16] Y. H. Chen and G. Leitmann, “Robustness of uncertain systems in the absence of matching assumptions,” International Journal of Control, vol. 45, no. 5, pp. 1527-1542, 1987.
    [17] W. E. Schmitendorf and T. H. Hopp, “Asymptotic tracking of uncertain systems in the absence of matching conditions,” American Control Conference, pp. 423-426, 1985.
    [18] W. E. Schmitendorf, “Methods for obtaining robust tracking control laws,” American Control Conference, pp. 212-216, 1986.
    [19] W. E. Schmitendorf, “Stabilizing controllers for uncertain linear systems with additive disturbances,” International Journal of Control, vol. 47, no. 1, pp. 85-95, 1988.
    [20] Z. Qu and D. M. Dawson, “Continuous state feedback control guaranteeing exponential stability for uncertain dynamical systems,” IEEE Conference on Decision and Control, pp. 2636-2638, 1991.
    [21] H. Wu, K. Mizukami, and C. Letters, “Exponential stability of a class of nonlinear dynamical systems with uncertainties,” Systems & Control Letters, vol. 21, no. 4, pp. 307-313, 1993.
    [22] G. Tao, Adaptive control design and analysis, John Wiley & Sons, 2003.
    [23] B. Xian, D. M. Dawson, M. S. de Queiroz, and J. Chen, “A continuous asymptotic tracking control strategy for uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1206-1211, 2004.
    [24] J. Chen, A. Behal, and D. M. Dawson, “Robust feedback control for a class of uncertain MIMO nonlinear systems,” IEEE Transactions on Automatic Control, vol. 53, no. 2, pp. 591-596, 2008.
    [25] S. Mobayen, M. H. Asemani, and V. J. Majd, “Transient performance improvement using composite nonlinear feedback and integral sliding surface for matched and unmatched uncertain MIMO linear systems,” The 3rd International Conference on Control, Instrumentation, and Automation, pp. 83-88, 2013.
    [26] 楊育瑋,多輸入多輸出線性系統之滑動追蹤控制器設計,碩士論文,機械工程系,國立臺灣科技大學,2019。

    QR CODE