簡易檢索 / 詳目顯示

研究生: 廖秉鋐
Bing-Hong Liao
論文名稱: 銅膜化學機械拋光之軟拋墊磨耗率與性能分析研究
Study on Soft Pad Wearing Rate and Pad Performance Analysis for Cu-Chemical Mechanical Polishing
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 劉顯光
Hsien-Kuang Liu
潘文玨
Wen-Chueh Pan
莊程媐
Cheng-Hsi Chuang
陳昭彰
Chao-Chang Chen
田維欣
Wei-Xin Tian
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 187
中文關鍵詞: 軟拋墊化學機械拋光拋光墊磨耗率拋光墊性能指標
外文關鍵詞: Soft pad, Chemical Mechanical Planarization, Pad Wearing Rate, Pad Performance
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究
之目的 為 研發線上量測軟拋墊之 磨耗率 (Pad Wearing Rate, PWR)與 性能指標應用於化學機械拋光之製程 透過 先前 開 發之動態量測
拋光墊性能指標系統 以 自行研發 串聯 式操作介面與軟拋墊計算模組 分
析 軟 拋墊於製程中 之 化學機械 拋光 (CMP)與 刷整 (Brushing)磨耗 率 以及拋
光墊之 表面粗糙度、溝槽深度、 承載 面積 比 、拋光墊非均勻度等 拋光墊 表
面性能指標。 本 研究 分以三階段進行 先 以 軟拋墊 計算模組及 硬拋墊 計算
模組及多組拋光盤轉速及量測取樣率針對軟 拋墊進行表面形貌量測,分
析其資料穩定性選擇 出轉速 60 rpm及取樣率 5000 Hz之最佳量測參數,
再以此量測參數進行後續實驗 透過 10片銅膜晶圓 CMP實驗 分析出軟 拋
墊之 粗糙度變化主要來 自 承載 面積 比 中的儲存區 (Rvk )受到 拋光液懸浮微
粒 及 晶圓碎片 填塞 並驗證本系統對軟 拋墊表面形貌變化之量測能力, 並
透過對 純 銅板 (99.98%, 3N8)的純 CMP及純 Brushing之實驗交互比對, 得
出製程中 Brushing與 CMP的 磨耗率佔比為 16%及 84%。 最後 透過 30片
40×40 mm2銅膜 CMP實驗中得到軟 拋墊之 溝槽深度與儲存區 (Rvk)等拋
光墊性能指標與晶圓移除率分別具有高度相關 (0.75)及中度相關 (0.6)的相
關性,由於 此兩種指標具有涵養與散佈 拋光液 之功能 故 判斷軟 拋墊於 銅
膜 CMP之 移除機制中以化學能佔比較高之結果 。


This study aims to develop a signal analysis module for pad wearing rate (PWR) and pad performance of soft polishing pad in Chemical Mechanical Planarization/Polishing (CMP). The topography of the total working area of the polishing pad can be monitored by the dynamic pad monitoring system (DPMS) previously developed. A calculation module is designed for analyzing the PWR, pad surface roughness, pad groove depth, bearing area ratio, and pad uniformity of both brushing and CMP process. The study is conducted in three phases. First, the topography of the soft pad is measured in different rotation speeds and sampling frequencies. The results of the soft pad and hard pad are compared to determine the optimum parameters for the calculation module. As a result, the optimum parameters for measurement are 60 rpm as platen speed and 5000 Hz as sampling frequency. Secondly, CMP experiments with 10 pieces of copper blanket wafers are conducted to observed the change of pad topography during the process. Results show the pad roughness is reduced because the Rvk is filling by slurry particles and wafer debris. Besides, The PWR is measured by experiments of brushing process and copper plate CMP. Results show that the ratio of PWR of brushing and CMP process are 16% and 84%. Finally, the correlations between pad performance, wafer remove rate, and wafer Sa are discussed through CMP experiments of 30 pieces of copper blanket wafers. Results show that Rvk and pad groove depth are highly related to MRR. Because Rvk and pad groove depth can represent the slurry reservoir section of pad, the chemical removal of Cu-CMP using a soft pad is relatively higher than that of Cu-CMP by the hard pad.

摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 表目錄 XVI 符號表 XVII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 5 第二章 文獻回顧 8 2.1 拋光墊之表面性能量測指標 8 2.2 拋光墊之修整分析 16 2.3 共軛焦量測方法 22 2.4 CMP量測系統應用專利分析 27 2.5 文獻回顧總結 30 第三 章 軟拋墊分析與動態量測系統架構 32 3.1 軟拋墊磨耗率與性能分析 32 3.1.1 拋光墊量測指標 33 3.1.2 承載 面積 比 (Bearing Area Ratio, BAR) 36 3.2 動態量測系統架構 38 3.2.1 動態量測系統動態量測系統(DPMS)原理原理 38 3.2.2 彩色共軛焦原理彩色共軛焦原理 39 3.2.3 感測器架設感測器架設 40 3.2.4 搖臂量測系統軌跡方程式搖臂量測系統軌跡方程式 42 3.2.5 量測系統整合程式量測系統整合程式 44 3.3 動態量測訊號分析方法動態量測訊號分析方法 46 3.3.1 動態量測訊號處理動態量測訊號處理 47 3.3.2 軟拋墊計算模組設計軟拋墊計算模組設計 50 3.3.3 快速傅立葉轉換快速傅立葉轉換(Fast Fourier Transform, FFT) 54 3.3.4 IIR濾波器應用濾波器應用 54 3.3.5 取樣頻率分析取樣頻率分析(Sampling Frequency) 56 3.4 系統量測與分析結果驗證系統量測與分析結果驗證 57 第四章章 CMP與與Pad修整設備規劃修整設備規劃 60 4.1 實驗設備實驗設備 60 4.1.1 拋光機拋光機 60 4.1.2 彩色共軛焦感測器彩色共軛焦感測器 64 4.1.3 整合式修整搖臂整合式修整搖臂 65 4.2 PML實驗量測設備實驗量測設備 67 4.3 實驗耗材實驗耗材 68 4.3.1 拋光墊拋光墊 68 4.3.2 測試用晶圓測試用晶圓 69 4.3.3 拋光液拋光液 71 4.3.4 毛刷毛刷 73 第五章 軟拋墊最佳計算模組與量測參數驗證軟拋墊最佳計算模組與量測參數驗證(實驗實驗A) 81 5.1.1 最佳計算模組測試最佳計算模組測試 (實驗實驗A-1) 83 5.1.2 最佳系統量測參數實驗最佳系統量測參數實驗 (實驗實驗A-2) 87 第六章 動態量測系統之軟拋墊量測結果評估動態量測系統之軟拋墊量測結果評估 89 6.1 軟拋墊之磨耗因子及製程磨耗率分析軟拋墊之磨耗因子及製程磨耗率分析(實驗實驗B) 90 6.1.1 濕式濕式10片銅膜晶圓之片銅膜晶圓之CMP與與Brushing (實驗實驗B-1) 92 6.1.2 軟拋墊之軟拋墊之Brushing磨耗實驗磨耗實驗 (實驗實驗B-2) 100 6.1.3 軟拋墊之軟拋墊之CMP磨耗實驗磨耗實驗 (實驗實驗B-3) 104 6.2 30片銅膜晶圓片銅膜晶圓CMP (實驗實驗C) 110 6.2.1 軟拋墊量測結軟拋墊量測結果與晶圓移除率之相關性分析果與晶圓移除率之相關性分析 114 6.2.2 軟拋墊量測結果與晶圓軟拋墊量測結果與晶圓Sa、、Sq、、Sz之相關性分析之相關性分析 119 6.3 綜合結果與討論綜合結果與討論 129 第七章 結論與建議結論與建議 132 7.1 結論結論 132 7.2 建議建議 133 參考文獻 134 附錄A 拋光墊類型介紹[22] 137 附錄B 實驗量測設備 139 附錄C 實驗實驗A之各參數量測結果 142 附錄D 實驗實驗B-1 10 Round CMP量測結果 144 附錄 附錄E 實驗實驗B-2與與B-3之長時間磨耗量測結果 146 附錄F 30片銅膜片銅膜CMP之拋光墊量測結果 151 附錄G 動態量測拋光墊非均勻度結果果 153 附錄H 30片銅膜片銅膜CMP之晶圓移除率 154 附錄 附錄I 30片銅膜片銅膜CMP之取樣晶圓之取樣晶圓Sa、、Sq、、Sz 156 附錄J 2D和和3D粗糙度計算說明 159

[1] SEMI, " Mid-Year Total Semiconductor Equipment Forecast" OEM Perspective, 2021.
[2] 蕭百成 , "銅化學機械平坦化之軟拋光墊性能指標分析研究 ," 碩士 , 機械工程系 , 國立臺灣科技大學 , 台北市 , 2019.
[3] K. Park, H. Kim, O. Chang, and H. J. J. o. M. P. T. Jeong, "Effects of pad properties on material removal in chemical mechanical polishing," vol. 187, pp. 73-76, 2007.
[4] 王柏凱 , "雷射共軛焦三維表面形貌量測儀開發應用 於拋光墊之碎
形維度合承載比分析 ," 碩士 , 機械工程系 , 國立臺灣科技大學 , 台
北市 , 2013.
[5] 溫禪儒 , "單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命
指標分析研究 ," 碩士 , 機械工程系 , 國立臺灣科技大學 , 台北市 , 2014.
[6] 蔡明城 , "開發線上監控量測方法與系統應用於拋光墊性能水準分
析之研究 ," 碩士 , 機械工程系 , 國立臺灣科技大學 , 台北市 , 2016.
[7] 傅彥綺 , "拋光墊線上量測系統於修整性能分析與銅化學機械拋光
之相關性研究 ," 碩士 , 機械工程系 , 國立臺灣 科技大學 , 台北市 , 2017.
[8] 陳俊臣 , "線上拋光墊性能監測之彩色共軛焦系統取樣分析 ," 碩士 , 機械工程系 , 國立臺灣科技大學 , 台北市 , 2018.
[9] Q.-P. Pham, C.-C. A. J. I. J. o. P. E. Chen, and Manufacturing, "Study on pad cutting rate and surface roughness in diamond dressing process," vol. 18, no. 12, pp. 1683-1691, 2017.
135
[10] 李奕廷李奕廷, "單點鑽石刀具近似正交切削軟韌彈性墊之研究單點鑽石刀具近似正交切削軟韌彈性墊之研究," 碩士碩士, 機機械工程系械工程系, 國立臺灣科技大學國立臺灣科技大學, 台北市台北市, 2016.
[11] 李梓豪李梓豪, "交叉多角度單顆鑽石修整軟韌彈性墊之研究交叉多角度單顆鑽石修整軟韌彈性墊之研究," 碩士碩士, 機械機械工程系工程系, 國立臺灣科技大學國立臺灣科技大學, 台北市台北市, 2018.
[12] 廖偉程廖偉程, "動態量測拋光墊系統於修整性能與銅膜晶圓化學機械平動態量測拋光墊系統於修整性能與銅膜晶圓化學機械平坦化之相關性研究坦化之相關性研究," 碩士碩士, 機械工程系機械工程系, 國立臺灣科技大學國立臺灣科技大學, 台北台北市市, 2020.
[13] T. Sun, Y. Zhuang, L. Borucki, and A. J. J. J. o. A. P. Philipossian, "Characterization of pad–wafer contact and surface topography in chemical mechanical planarization using laser confocal microscopy," vol. 49, no. 6R, p. 066501, 2010.
[14] J. Solle, J.-M. Linares, J.-M. Sprauel, and E. J. C. a. Mermoz, "Optical measurement for the estimation of contact pressure and stress," vol. 61, no. 1, pp. 483-486, 2012.
[15] G. Fresquet and J.-P. Piel, "Optical characterization and defect inspection for 3D stacked IC technology," in International Symposium on Microelectronics, 2014, vol. 2014, no. 1, pp. 000630-000634: International Microelectronics Assembly and Packaging Society.
[16] C. Chen, W. Yang, J. Wang, W. Lu, X. Liu, and X. J. P. E. Jiang, "Accurate and efficient height extraction in chromatic confocal microscopy using corrected fitting of the differential signal," vol. 56, pp. 447-454, 2019.
[17] S. Dhandapani and J. Qian, "Predictive filter for polishing pad wear rate monitoring," ed: Google Patents, 2019.
[18] P. Pawlus, R. Reizer, M. Wieczorowski, and G. J. P. E. Krolczyk, "Material ratio curve as information on the state of surface topography—A review," vol. 65, pp. 240-258, 2020.
[19] S. Lee, H. Kim, and D. Dornfeld, "Development of a CMP pad with controlled micro features for improved performance," in ISSM 2005, IEEE International Symposium on Semiconductor Manufacturing, 2005., 2005, pp. 173-176: IEEE.
136
[20] R. Yim et al., "Chemical/mechanical balance management through pad microstructure in CMP," vol. 195, pp. 36-40, 2018.
[21] S. Prion and K. A. J. C. s. i. n. Haerling, "Making sense of methods and measurement: Pearson product-moment correlation coefficient," vol. 11, no. 10, pp. 587-588, 2014.
[22] M. Stewart, A new approach to the use of bearing area curve. Society of Manufacturing Engineers Dearborn, MI, 1990.

無法下載圖示 全文公開日期 2024/08/26 (校內網路)
全文公開日期 2024/08/26 (校外網路)
全文公開日期 2024/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE