簡易檢索 / 詳目顯示

研究生: 魏志安
Chih-an Wei
論文名稱: 表面電漿於固定化葡萄糖酵素之量測
Surface Plasmon Biosensing for Immobilized GOD
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 林保宏
Pao-hung Lin
張勝良
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 61
中文關鍵詞: 表面電漿共振葡萄糖氧化酵素
外文關鍵詞: surface plasmon resonance, glucose oxidase
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為表面電漿共振(Surface plasmon resonance, SPR)技術具有高靈敏度特性,所以被廣泛的應用在生物感測技術,藥物的開發及篩選、食品檢測、環境汙染監測以及疾病的檢測等等。
    在全世界,每小時就有一人死於糖尿病,對人類來說這是一種嚴重的疾病。血糖濃度的測量,是告訴我們一個人在有糖尿病前期或糖尿病的情況。正常人的血糖濃度為110毫克每分公升(毫克/分公升)或更低,糖尿病人濃度為126毫克/分公升或更高,糖尿病前期的人濃度為110毫克/分公升和125毫克/分公升之間。在這篇論文中,葡萄糖氧化酵素(glucose oxidase, GOD)固定化可有效提高血糖檢測的敏感性。
    而在SPR量測技術中,最常見到的是角度調製(angle modulation)和波長調製(wavelength modulation),在此,我們以波長調製為主,因為與角度調制有關的步進馬達位置重複性不若現今光通訊波長來的精準,我們利用通訊波段 1520~1570 nm,因為對於波長調製而言,此波段較為靈敏。
    在實驗開始前,我們先利用商業軟體 matlab 來模擬我們實驗所需的不同種類金屬與金屬厚度,以這為基礎下,我們選擇較為穩定的金,其中如果金在厚度 30 nm 、波長為 1550 nm 時為最佳,共振角在61.9度,反射系數為 0.0196。
    實驗中,我們利用化學反應 MUA、EDC、NHS、PBS 等,將GOD固定在稜鏡的金屬表面,分別對於不同濃度葡萄糖做測量 10、100、200 mg/dL,其靈敏度為 0.0423 nm/(mg/dL),解析度為 0.023 mg/dL,與SPR光纖比較,光纖SPR解析度為 0.099 mg/dL,我們的SPR系統比SPR光纖系統的解析度小約4倍。
    對於我們的SPR通訊波段而言,量測極限可達 0.01 mg/dL,與市面上販售的羅氏ACCU-CHEK 血糖機相比,我們的量測極限是羅氏ACCU-CHEK 血糖機的1000倍。


    In recent years, the surface plasmon resonance (SPR) technology is demonstrated with high sensitivity and widely utilized in biosensing, drug development/screening, food testing, environmental pollution monitoring and disease detection.
    One person passed away per hour from diabetes in the world, which is a serious disease for human beings. Blood glucose concentration measuring is the way to tell if one have pre-diabetes or diabetes. A normal glucose level is 110 milligrams per deciliter (mg/dL) or below, a diabetic level is 126 mg/dL or higher, and a pre-diabetes level is between 110 mg/dL and 125 mg/dL. In this thesis, the glucose oxidase (GOD) was utilized for immobilization for higher sensitive glucose sensing.
    In the SPR characterization technique, two modulation approached are commonly used, angle and wavelength. Due to the angular resolution and repeatability from the step motor, the wavelength modulation was utilized for testing. The telecommunication wavelength range was then chosen because of its high sensitivity compared with visible light.
    First of all, the commercial software, matlab, was used to simulate SPR phenomena with various metals and their thickness. In this thesis, the stable metal, gold, was simulated to illustrate the reflection coefficient of 0.0196 and resonance angle of 61.9 degree with 30-nm thickness at 1550-nm operating wavelength.
    Glucose oxidase (GOD) on the prism gold metal surface was immobilized by chemical reaction, MUA, EDC/NHS, and PBS. The sensitivity and resolution from various glucose concentrations of 10, 100, and 200 mg/dL were showing 0.0423 nm/(mg/dL) and 0.023 mg/dL, respectively. Compared with the SPR glucose fiber sensor with the resolution of 0.099 mg/dL, our SPR was demonstrating at least 4 times better.
    The sensing limit from our SPR sensor with telecommunication wavelength was showing 0.01 mg/dL with 1000 times better than Roche ACCU-CHEK blood glucose meter.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 簡介 1 1-2 研究動機 2 1-3 葡萄糖與葡萄糖氧化酵素 3 1-4 何謂生醫感測器 6 1-5 論文架構 8 第二章 表面電漿子理論 9 2-1 表面電漿子 9 2-2 激發表面電漿波的方式 18 2-2-1 稜鏡耦合 18 2-2-2 光柵耦合 20 2-2-3 光波導耦合 20 2-3 表面電漿共振 21 第三章 實驗模擬與固定化介紹 27 3-1 金屬的選擇 27 3-2 金屬厚度的選擇 29 3-3 待測物虛部項探討 31 3-4 共振波長探討 33 3-5 固定化介紹 35 3-5-1 自我聚集單層 36 3-6 SPR相關資料之整理 38 第四章 實驗方法與結果討論 40 4-1 Kretschmann組態下的SPR感測步驟 40 4-2 SPR波長調製系統架設 41 4-3 購買的藥品與器材 47 4-4 GOD固定化實驗之方法 48 4-5 結論 53 第五章 未來展望 54 參考文獻 55

    [1] K.. D. Kihm, S. Cheon, J. S. Park a, H. J. Kim, J. S. Lee, I.T. Kim , H. J. Yi , “Surface plasmon resonance (SPR) reflectance imaging: Far-field recognition of near-field phenomena,” Optics and Lasers in Engineering, vol. 50, pp.64–73, , 2012.
    [2] J. Melendez, et al, “A commercial solution for surface plasmon sensoring,” Sensors and Actuators B, vol. 35, pp. 212–216, 1996.
    [3] W. Bogdan, et al, “ SPR Biosensor Technique Supports Development in Biomaterials Engineering,” New Perspectives in Biosensors Technology and Applications, no. 5, pp. 64-82 , 2011.
    [4] https://tw.knowledge.yahoo.com/question/question?qid=1613053101394
    [5] A. D. Association, “Standards of medical care in diabetes,” Diabetes Care, vol. 33, pp.11-61, 2010.
    [6] W. L. Hsu, “Development of optical and electrical biotech methodology: an optically multi-functional biochip system and innovative electro-chemistry methodology,” Master dissertation, National Taiwan University, Taipei, Taiwan, 2003.
    [7] OenTouch: http://www.onetouchasia.com/tw/zh/content.php?c=29&p=32
    [8] http://health99.hpa.gov.tw/article/ArticleDetail.aspx?TopIcNo=789&DS=1-life
    [9] W. Jian, S Jan, W. Sansen,“ The glucose sensor integraTable in the microchannel,” Sensors and Actuators B, vol. 78, no. 1, pp. 221-227, 2001.
    [10] H. Zisser, “Clinical Hurdles and Possible Solutions in the Implementation of Closed-Loop Control in Type 1 Diabetes Mellitus,” Journal of Diabetes Science and Technology, vol. 5, 2011.
    [11] 吳宗正,生物感測器,生物技術,九州出版社,第十八章, pp.24~262,1996。
    [12] A. Hulanicki, et al, “chemical sensors definitions and classification,” Fukuoka, Elsevier: Amsterdam, Pure and App Chern, vol. 63, no. 9, pp. 1247-1250, 1991.
    [13] 劉 超,葡萄糖氧化酶的研究进展,食品與藥品,第12卷第07期,2010年。
    [14] L. C. Clark, “ Jr. Membrane Polarographic Electrode System and Method with Electrochemical Compensation,” U.S. Patent, vol. 10, no. 494, 1970.
    [15] W. Lam, L. H. Chu, C. L. Wong, and Y. T. Zhang, “A Surface Plasmon Resonance System for the Measurement of Glucose in Aqueous Solution,” Sensors and Actuators B, vol. 105, pp. 138-143, 2005.
    [16] Haryo,運用於通訊波段之表面電漿共振生醫感測,國立臺灣科技大學電子工程系,台北,2014。
    [17] J. Melendez, et al, “ A commercial solution for surface plasmon sensoring,” Sensors and Actuators B, Vol. 35, pp. 212-216 , 1996.
    [18] 吳民耀、劉威志,表面電漿子理論與模擬,物理雙月刊(廿八卷二期)2006 年。
    [19] 邱國斌、蔡定平,金屬表面電漿簡介,物理雙月刊(廿八卷二期)2006 年。
    [20] 林延諭,感測靈敏度於表面電漿共振之研究,國立臺灣科技大學電子工程系,台北,2012。
    [21] 吳添銘,金奈米粒子侷部表面電漿波共振在感測器之應用研究,國立雲林科技大學電子工程系碩士班,雲林,2007。
    [22] Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “ Differential-phase surface plasmon resonance biosensor,” Analytical Chemistry, vol. 80, no. 14, pp. 5590-5595, 2008.
    [23] A. Otto, “Excitation of nonradiative surface plasma waves insilver by the method of frustrated total reflection,” Journal of Zeitschrift fur Physik , Vol. 216, pp 398-410, 1968.
    [24] E. Kretchmann, “ Die bestimmung der optischen Konstanten dunner Schichten in der Nahe der Plasmafrequenz aus Kurvenfeldern konstanter Transmission,”.Z. Phys.,vol. 221, pp. 346-356, 1971.
    [25] C. P. Cahill, S. K. Johnston, S. S. Yee, “ A surface plasmon resonance sensor probe based on retro-reflection,” Sensors and Actuators, vol. 45, pp.161-166, 1997.
    [26] C. M. Wang, Y. C. Chang, and D. P. Tsai, “ Spatial filtering by using cascading plasmonic gratings,” Optical Society of America , vol. 17, no. 8, pp. 6218-6223, 2009.
    [27] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B, vol. 54, pp. 3-15, 1999.
    [28] J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B: Chemical, vol. 54, no. 1, pp. 16-24, 1999.
    [29] Z. Ruixi, Z. Yuan, H. Sailing, “Energy intensity analysis of modes in hybrid plasmonic waveguide,” Frontiers of Optoelectronics, vol. 5, no. 1, pp. 68-72, 2012.
    [30] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift Fur Physik a Hadrons and Nuclei, Vol. 216, No. 4, pp. 398-410, 1968.
    [31] http://www2.mpip-mainz.mpg.de/groups/bonn/research/menges_bernhard/evanescentwaveoptics
    [32] L. Gaetan, and Olivier, J. F. Martin “ Numerical study and optimization of a diffraction grating for surface plasmon excitation,” Proceedings of SPIE, vol. 5927, pp. 1-9, 2005.
    [33] S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong,“ Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” Optical Society of America, vol. 42, no. 34, pp. 6905-6910, 2003.
    [34] C. J. Powell and J. B. Swan, “ Effect of oxidation on the characteristics loss spectra of aluminum and magnesium,” phys. Rev, vol. 118, no. 3, pp. 640-643, 1960.
    [35] A. Stefan , “ Plasmonics: Fundamentals and Applications,” Springer Science Business Media LLC, 2007.
    [36] J. Homola, “ Springer series on chemical sensors and biosensors,” Springer, vol. 4, pp. 3-44, 2006.
    [37] http://refractiveindex.info/legacy/?group=METALS&material=Gold
    [38] F. Bahrami, J. S. Aitchison, and M. Mojahedi, “ A highly optimized plasmon waveguide resonance biosensor, ” IEEE Photonics Conference, art. No. 6358564 pp. 208-209, 2012.
    [39] G.. M. Whitesides, , G.. B. Sigal, C. Bamdad, A. Barberis, J. Strominger, “A self-assemble monolayer for binding and study of histidine-tagged proteins by surface plasmon resonance,” Analytical Chemistry, vol. 68, no. 3, pp. 490-491, 1996.
    [40] T. Wink, Z. Van, S. J. Bult, A. Van, “ Self-assembled Monolayers for Biosensors,” Analyst, vol. 122, pp. 43-50, 1997.
    [41] G.. P.Lopez, B. D. Ratner, R. J. Rapoza, and T. A. Horbeet, “ Plasma Deposition of Ultrathin Films of Poly (2-hydroxyethyl methacrylate): Surface Analysis and Protein Adsorption Measurements,” Macromolecules, vol. 26, no. 13, pp. 3247-3252, 1993.
    [42] 范逸軒,脂肪分解酵素 Pseudomonas cepacia 固定於奈米纖維膜並應用在生質柴油製程之研究,國立成功大學化學工程學系碩士論文,臺南,2008。
    [43] N. Prabhakar, A. Kavita, K. Sunil, R. Pratima Solanki, M. Iwamoto,c Harpal Singh, and B. D. Malhotra, “ Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance,” Analyst ,vol. 113, pp. 1587-91 , 2008.
    [44] 林 萱,利用相位式表面電漿共振系統檢測免疫球蛋白鍵結之應用分析,國立中央大學光電科學與工程學系,桃園,2012。
    [45] J. Homola, K. Hegnerova, M. Vala. “ Surface Plasmon Resonance Biosensors for Detection of Foodborne Pathogens and Toxins, ” . Proc. of SPIE Vol. 7167, February, 2013.
    [46] K. D. Kihm, S. Cheon, J. S. Park, H. J. Kim, J. S. Lee, I. T. Kim, H. J. Yi, “ Surface plasmon resonance (SPR) reflectance imaging: Far-field recognition of near-field phenomena,” Optics and Lasers in Engineering, vol. 50, no. 1, pp.64–73, 2012.
    [47] S. A. Kim, S. J. Kim “Avian Influenza-DNA Hybridization Detection using Wavelength Interrogation-based Surface Plasmon Resonance Biosensor,” IEEE SENSORS Conference, 2009.
    [48] M. Ying, et al, “An Optical Biosensor for Monitoring Antigen Recognition Based on Surface Plasmon Resonance Using Avidin-Biotin System,” Sensors , 1, pp.91-101,2001.
    [49] S. Masayasu, “ Miniaturization of SPR Immunosensors, ” Analytical sciences, vol. 17, 2001.
    [50] T. Q. Lin, Y. L. Lu, and C. C. Hsu, “ Fabrication of glucose fiber sensor based on immobilized GOD technique for rapid measurement” Optical Society of America , vol. 18, no. 26, pp.18-26, 2010.
    [51] V. Maria, S. Bollob, P. Labbec, A. Rivasa, F. Nancy, “ Quaternized chitosan as support for the assembly of gold nanoparticles and glucose oxidase: Physicochemical characterization of the platform and evaluation of its biocatalytic activity,” Electrochimica Acta, vol. 56 , pp. 1316–1322, 2011.
    [52] R. Lao, S. Song, H. Wu, L. Wang, Z. Zhang, L. He, and C. Fan, “ Electrochemical Interrogation of DNA Monolayers on Gold Surfaces,”, Analytical Chemistry, vol. 77, no. 19, pp.6475-6480, 2005.
    [53] D. Cui, X. Chen, and Y. Wang, “ Detection of SARS-CoV Antigen via SPR Analytical Systems with Reference,” ISBN 7619, pp. 302, 2010.
    [54] J. R. Rochea, S. M. Nga, R. Narayanaswannya, M. Pageb, “ Multiple surface plasmon resonance quantification of dextromethorphan using a molecularly imprinted_cyclodextrin polymer: A potential probe for drug–drug interactions,” Sensors and Actuators B, vol. 139, pp. 22-29, 2009.
    [55] 謝登讚,利用同步輻射源研究具功能性尾端之單層有機分子膜,私立中原大學醫學工程學系,桃園,2002。
    [56] I. Chudobovh, et al, “ Fibre optic biosensor for the determination of D-glucose based on absorption changes of immobilized glucose oxidase,” Analytica Chimica Acta. vol. 319. pp.103-110, 1996.
    [57] L. H. Lin, and J. S. Shih, ” Immobilized Fullerene C60-Enzyme-Based Electrochemical Glucose Sensor,” Journal of the Chinese Chemical Society, vol. 58, pp. 228-235, 2011.
    [58] R. Bentley, “ Glucose Oxidase, ” Enzymes, 7, Academic Press, pp. 567-586, 1963.
    [59] D. Li, Q. He, Y. Cui, L. Duan , J. Lia, ”Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability,” Science Direct, 2007.
    [60] ACCU-CHEK: http://www.accu-chek.com.tw/chinese/03_customer/03_faq.php
    [61] http://elte.prompt.hu/sites/default/files/tananyagok/practical_biochemistry/ch08s07.html
    [62] K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, ” Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires, ” Journal of Lightwave Technology, vol. 26, pp. 1472-1478, 2008.
    [63] A. Tura, et al, “A Low Frequency Electromagnetic Sensor for Indirect Measurement of Glucose Concentration: In Vitro Experiments in Different Conductive Solutions ,” Sensors, vol. 10, pp. 5346-5358, 2010.

    無法下載圖示 全文公開日期 2019/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE