簡易檢索 / 詳目顯示

研究生: 蔡宏欣
Hong-Sin Tsai
論文名稱: 表面電漿共振與Fabry-Perot干涉於生醫感測之靈敏度研究
Biosensing Sensitivity Study in Surface Plasmon Resonance and Fabry-Perot Interference
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 李志堅
Chih-Chien Lee
林保宏
Pao-hung Lin
黃柏仁
Bohr-Ran Huang 
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 表面電漿共振
外文關鍵詞: Surface Plasmon Resonance
相關次數: 點閱:177下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物感測器需具備有辨識生物分子功能的元件, 同時可以將生物分子固定於表面當作感應元件, 此乃利用生物分子間的交互作用和匹配性, 達到和待測物間所產生的專一性與高靈敏度之反應. 後續再將生物分子間反應變化以光學、電學、磁學...等方式, 進行定性或定量的成份分析。表面電漿共振(Surface Plasmon Resonance, SPR)為發生在金屬薄膜與介電質介面之間的電子集體震盪現象, 將此特性應用於表面電漿共振生物感測器, 具有免標識、即時檢驗、專一性和高靈敏度...等特性, 因此可用在生物分子檢測上,可對物質進行有效成份分析與濃度微量變化檢驗。表面電漿共振分別有三種耦合方式: 光柵耦合、波導耦合與稜鏡耦合。

    本論文以稜鏡耦合來產生表面電漿效果之生物感測器, 波長調製乃運用光纖通訊之波段, 因其深穿透性(Penetration Depth)與高靈敏度均比傳統所使用的可見光優異。本論文中主要探討 1550 nm 波長光源對於大分子 MTB DNA(約數百個核苷酸)與小分子miRNA-21(約21~25 個核苷酸)在表面電漿共振與 Fabry- Perot干涉的靈敏度之比較。而表面電漿共振之靈敏度是經由軟體 Origin的傅立葉轉換所得, 而 Fabry-Perot干涉產生之靈敏度是經由Matlab程式計算所得。

    實驗結果顯示固定化後靈敏度會相對提升, 接著我們將進一步去探討表面電漿共振與Fabry-Perot干涉之間的感測差異。文獻中提及長波長光源因為具有的深穿透性, 應該較適合於量測大分子生物待測物, 我們實驗亦證明此光纖通訊長波長波段適用於小分子miRNA-21的生物感測。


    Biosensors need to own the capability to recognize the biomolecules immobilized to the surface as the sensing element. Through biological interactions and matching molecules the specificity and high sensitivity for analyte could be demonstrated in optical, electrical, and magnetic properties with qualitative or quantitative composition analysis. Surface plasmon resonance (SPR), occurring in the interface between the metal film and the dielectric material, demonstrates the characteristics of label-free, immediate inspection, specificity and high sensitivity. There are three coupling approaches in SPR : grating, optical waveguide, and prism coupling.
    In this thesis, a prism coupling with the telecommunication wavelength modulation, deeper penetration depth and higher sensitivity than traditional optical source, is utilized to demonstrate SPR biosensing. The analytes will include the large molecules MTB DNA (about hundreds of nucleotides) and small molecule miRNA-21 (about 21 to 25 nucleotides) through the SPR wavelength modulation and Fabry-Perot interferometer (FPI) for sensitivity comparison. The Fourier filtering function of Origin software and matlab are also used for data analysis, respectively, for SPR and FPI.
    The experimental data show that the immobilized probe gets higher sensitivity. A comparison and analyses between SPR and FPI will be further studied. The longer wavelength owns the good sensitivity on the large molecule. Our data successfully demonstrate the significant signal from small molecule biosensing under telecommunication wavelengths.

    摘 要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1簡介 1 1-1-1結核桿菌與結核病 2 1-1-2 miRNA和癌症 3 1-2研究動機 5 1-3論文架構 6 第二章 表面電漿理論與模擬 7 2-1表面電漿波之理論推導 7 2-2表面電漿波之激發 15 2-2-1稜鏡耦合 17 2-2-2光柵耦合 18 2-2-3光波導耦合 18 2-3電磁波於介質斜向入射之特性 19 2-4表面電漿共振 23 2-5表面電漿共振與反射率探討 26 2-5-1角度及膜厚與反射率關係 26 2-5-2波長及膜厚與反射率關係 28 2-5-3待測物與反射率關係 29 2-6靈敏度 30 第三章 稜鏡耦合型SPR感測器製程 31 3-1元件設計 31 3-2實驗設備 32 3-3微流道簡介與製作流程 34 3-3-1聚二甲基矽氧烷 34 3-3-2微流道製程 35 3-4 SPR金屬薄膜製成 38 第四章 波長調製式表面電漿感測器 39 4-1表面電漿共振量測方式 39 4-2實驗架構 40 4-3 MTB DNA與miRNA-21之固定化程序 41 4-4 Fabry Perot干涉 42 4-5 MTB DNA量測 45 4-5-1 固定化前之MTB DNA量測 45 4-5-2 固定化後之MTB DNA量測 49 4-6 miRNA-21量測 53 4-6-1 固定化前之miRNA-21量測 53 4-6-2 固定化後之miRNA-21量測 57 第五章 結果與討論 61 未來展望 64 參考文獻 65

    [1] J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuators B, vol. 54, pp. 3-15, 1999.
    [2] P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opticts Express, vol. 14, pp.7063-7072, 2006.
    [3] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Physical Soc., vol.18, pp. 269-275, 1902.
    [4] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, vol. 106, pp. 874-881, 1957.
    [5] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003.
    [6] S. A. Kim, S. J. Kim, S. H. Lee, T. H. Park, K. M. Byun, S. G. Kim, and M. L. Shuler, "Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor," J. Opt. Soc. Korea, vol. 13, pp. 392-397, 2009.
    [7] Scopus: www.sciencedirect.com

    [8] P. L. Hung, "Latent TB infection among healthcare workers," Master dissertation, National Defense Medical Center, Taipei, Taiwan, 2006.
    [9] C. Y. Lin, "Automated color-based segmentation for detection and evaluation of Mycobacterium tuberculosis," Master dissertation, National Cheng Kung University, Tainan, Taiwan, 2009.
    [10] 林 萱,利用相位式表面電漿共振系統檢測免疫球蛋白鍵結之應用分析,國立中央大學光電科學與工程學系,桃園,2012。

    [11] 邱國斌,蔡定平,"金屬表面電漿簡介",物理雙月刊,廿八卷二期,pp. 472-485,2006。
    [12] C. Pan, “Determination of small biomolecule by fiber-optic surface plasma resonance sensor,” Taipei, 2007.
    [13] G.Y. Lee, “Immobilization of DNA on Non-porous Polymer Particles of Microsize and Their Application,” 2001.
    [14] Muhammad Kashif, Ahmad Ashrif A. Bakar *, Norhana Arsad and Sahbudin Shaari, “Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry,” Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, 2014.
    [15] P. Hlubina M. Duliakova,M. KadulovaD. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor”,Optics Communications , vol 354 , pp.240–245 , 2015.
    [16] Z. Zheng, Y. Wan, X. Zhao, and J. Zhu, “Spectral interferometric measurementof wavelength-dependent phase response for surface plasmon resonance sensors” , Applied Optics , Vol. 48, No. 13 , pp.2491-2495 .
    [17] 林承賢,"應用於生理檢測之電驅動微流道製作",國立台灣科技大學電子工程所,2014。
    [18] Schott: http://www.us.schott.com/english/index.html

    [19] N. Zammatteo, C. Giradeaux, D. Delforge, J. J. Pireaux, and J. Remacle, "Amination of Polystyrene Microwells: Application to the Covalent Grafting of DNA Probes for Hybridization Assays,"Analytical Biochemistry, 236, pp. 85-94, 1996.

    [20] V. Lund, R. Schmid, D. Rickwood, and E. Hornes, “Assessment of Methods for Covalent Binding of Nucleic Acids to Magnetic Beads, Dynabeads, and the Characteristics of the Bound Nucleic Acids in Hybridization Reactions,” Nucleic Acids Research, 16, pp. 10861-10880, 1988.
    [21] S. S. Ghosh, and G. F. Muss, "Covalent Attachment of Oligonucleotides to Solid Supports," Nucleic Acids Research, 15, pp. 5353-5372, 1987.
    [22] S. R. Rassmussen, M. R. Larsen, and S. E. Rasmussen, "Covalent Immobilization of DNA onto Polystyrene Microwells : The Molecules are only Bound at the 5’ End," Analytical Biochem., 198, pp. 138-142, 1991.
    [23] Golosovsky, M.; Lirtsman, V.; Yashunsky, V.; Davidov, D. ," Midinfrared surface-plasmon resonance—A novel biophysical tool for studying living cell," J. Applied Physics, 2009.
    [24] S.A. Kim and S. J. Kim,” Detection of Avian Influenza-DNA Hybridization UsingWavelength-scanning Surface Plasmon Resonance Biosensor”, Journal of the Optical Society of Korea, Vol. 13, No. 3, September 2009, pp. 392-397.

    QR CODE