簡易檢索 / 詳目顯示

研究生: 蔡孟寰
Meng-Huan Tsai
論文名稱: 運用頻譜干涉相位之表面電漿共振進行動力學分析
Spectral Interferometry-based Surface Plasmon Resonance Dynamics Analysis of Association and Dissociation
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 張哲菖
Che-Chang Chang
林保宏
Pao-hung Lin
鄭天佑
Tien-Yu Cheng
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 88
中文關鍵詞: 表面電漿效應頻譜干涉相位分析動力學分析
外文關鍵詞: surface plasmon resonance, Spectral Interferometry, Phase analysis, Dynamics Analysis
相關次數: 點閱:245下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫光電是一新興且成長迅速的研究領域,近年來已成為生物科技之重點發展項目之一。由於醫療技術日益進步,使得人類平均壽命提高,間接也創造了健康照護的市場。尤其在醫療器材技術日新月異,先進國家重視個人健康概念,居家照護及遠距醫療等服務逐漸盛行等因素驅動下,光電感測產業更已成為生醫光電領域最耀眼的明星。在智慧穿戴裝置興起後,加上巨量資料分析技術的成熟,生理訊號監測系統與無線通訊設備的相結合,可望將各種個人生活習慣與醫學標準數據整合傳送至醫療機構,不但可提供個人化醫療服務,同時也可提供重要資訊,以改進醫療技術或保健成本效益,這也是光電感測產業未來性備受看好的主因。
    生醫感測可分成侵入式與非侵入式兩種形式量測,侵入式包含血糖儀、肝炎檢測儀、基因、血液檢測儀等;非侵入式則涵蓋血壓、心跳、血氧、心電圖、體溫等檢測儀,檢測方式與光學技術關係密切。
    表面電漿共振是一種存在於金屬與非導電介質界面的物理現象。當一束偏極光進入玻璃稜鏡時,會產生全反射。光在行進的時候,會與稜鏡上所覆蓋的金屬薄膜的原子產生共振,並產生衰逝波進入介電質層。當光經由稜鏡反射之後,在某一特定角度或波長的光強度會因為共振作用而急速下降,而光之相位則是會發生劇烈的變化,此一角度稱為共振角度,而波長稱為共振波長。改變介電質層之折射率時,共振角度或是波長會產生位移,相位則會產生變化,將此特性應用於生物感測器,具有即時檢測、高靈敏度與不須標記等特性,因此廣泛應用於生物檢測與免疫組織化學上,可有效的分析檢測物質之微小濃度折射率變化。常見的表面電漿共振量測方式有四種,角度調制、波長調制、強度調制與相位調制,其中又以相位調制之靈敏度為最高,然而自Nelson 等人(Nelson et al., 1996)提出相位量測方式以來,相關的研究似乎僅止於偵測極限的探討,忽略了動態量測的優勢,因此本論文便是利用自行建構的表面電漿共振相位感測儀,藉由測量反射光相位變化的方式,對流感DNA與其探針(probe)間的結合反應進行動態量測,達到其計算其反應速率常數目的,另外更深入探討如何優化流感檢體的探針(probe),使其在與檢體鍵結有更好的效果。
    計算流感檢體與其探針的速率常數結果顯示,用們自行建構表面電漿共振相位感測儀在1550nm波段所量測的結合速率常數9759.72M-1s-1,解離速率常數為0.0438s-1在,相較於Bicore3000在波長690nm所量測的結合速率常數47188.9 s-1和解離常數0.002342 s-1,本系統所測得速率常數較低,可能因為樣品溶液在管線中流動距離過長導致液體濃度遭到稀釋和液體輸送速率並沒有保持固定,同時相位變化的非線性趨勢,皆可能影響到最後速率常數的結果。而在優化固定化(Immobilization)方面,將流感DNA探針在固定化前,進行二硫鍵的還原,並利用胸腺嘧啶(T)組成的五組密碼子墊高原本探針高度,使的探針和流感DNA之間鍵結效果更加,最後量測到靈敏度為0.149rad/μg/ml。


    Bioelectronics, one of the key developments in biotechnology, is a new and rapid research field. The mature medical care increases human life and also benefits the health care market. The related medical equipment gets significantly improved, and moreover the health concept is deeply pursued in the well-developed countries. Optoelectronics sensing industry then gets a lot of attentions in the field of biomedical care. After an intelligent wear device into the market, the large amount of data transmission regarding a variety of personal health monitoring signals will not only provide personalized medical services, but also supply important information to the medical analysis for human health benefits.
    There are two kinds of biosensor, invasive and non-invasive. The invasive approach includes the glucose meter, the detector for hepatitis, gene and blood. The non-invasive type covers blood pressure, heart beat rate, blood oxygen, ECG, and body temperature detection.
    Surface plasmon resonance (SPR) is a physical phenomenon that happens between the interface of metal and non-conductive material. When a polarized light wave is entering a glass prism and satisfying the total internal reflection, the incident light will resonate with the thin metal film which is covered on the prism and generate the evanescent wave that penetrates into the dielectric layer. When the light is reflected by the prism at a specific angle or wavelength, the optical power will rapidly drop to minimum because of the resonant effect. In the meantime, the reflected light phase will also change dramatically. This specific angle and wavelength are named resonant angle and resonant wavelength, respectively. When the refractive index of a dielectric layer is changed, the resonant angle or resonant wavelength will shift, same as the reflected light phase. By applying these features onto biosensors, the real-time, high sensitivity and label-free detection could be demonstrated. Therefore, it has been extensively utilized in bio-sensing and immunochemistry for its efficiency in analyzing the small refractive index variation of detected materials. Among four common SPR modulation approaches, angle modulation, wavelength modulation, Intensity modulation and phase modulation, the phase modulation demonstrates the highest sensitivity. Since the phase measurement method was proposed for characterization, it mainly focused on improving detection limit and other bio-applications, lack of the dynamic analysis in bio molecular interactions. Here a homemade phase-based SPR system will be demonstrated to derive the kinetic parameters from Avian Influenza DNA SPR sensing. Moreover, the Avian influenza DNA probe immobilization will be also optimized for better sensitivity.
    Finally, we conducted the dynamically binding test for Avian Influenza DNA and its probe using both the homemade SPR system and use a commercial Biacore3000 SPR system for comparison. The association (ka) and dissociation (kd) rate constants obtained from the homemade system were 9759.72M-1s-1and 0.0438s-1. Compared with the Biacore3000 SPR system, we found that the ka value obtained from the home-made system was smaller than that the Biacore3000. This discrepancy was mainly from the dilution effect, in which the adjacent running buffer diluted the sample solution. The other issue may come from the nonlinear phase shift. In the immobilization optimization, the influenza DNA probe will be treated using the disulfide bond reduction to increase the original probe height for efficiently sense the influenza DNA. Finally, the sensitivity was 0.149 rad/μg/mL .

    摘要 I Abstract III 致謝 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究之重要性 3 1.4 論文架構 4 第二章 文獻探討 6 2.1 表面電漿波原理 6 2.1.1 電磁波方程式 6 2.1.2 金屬等效介電常數 9 2.1.3 表面電漿共振模態 11 2.1.4 表面電漿子激發 15 2.2表面電漿之耦合方式 15 2.2.1 稜鏡耦合 15 2.2.2 波導耦合 16 2.2.3 光柵耦合 17 2.3 表面電漿共振生物感測器 18 2.3.1 生物感測器簡介 18 2.3.2 表面電漿共振生物感測器 18 2.4 利用干涉之SPR感測器之研究 20 2.5.1 利用空間干涉之SPR感測器之研究 21 2.5.2 利用頻譜干涉之SPR感測器之研究 23 2.5.3 動態相移干涉術 26 摘要 I Abstract III 致謝 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究之重要性 3 1.4 論文架構 4 第二章 文獻探討 6 2.1 表面電漿波原理 6 2.1.1 電磁波方程式 6 2.1.2 金屬等效介電常數 9 2.1.3 表面電漿共振模態 11 2.1.4 表面電漿子激發 15 2.2表面電漿之耦合方式 15 2.2.1 稜鏡耦合 15 2.2.2 波導耦合 16 2.2.3 光柵耦合 17 2.3 表面電漿共振生物感測器 18 2.3.1 生物感測器簡介 18 2.3.2 表面電漿共振生物感測器 18 2.4 利用干涉之SPR感測器之研究 20 2.5.1 利用空間干涉之SPR感測器之研究 21 2.5.2 利用頻譜干涉之SPR感測器之研究 23 2.5.3 動態相移干涉術 26 2.5.4 SPR動態感測器研究 31 第三章 研究方法 33 3.1 金薄膜厚度模擬 33 3.2 SPR金薄膜之製程 35 3.2.1 使用設備 35 3.2.2 製程步驟 36 3.3 頻譜干涉表面電漿共振感測器 38 3.4 動力學參數分析 41 第四章 實驗步驟與結果 43 4.1 實驗架構 43 4.2 實驗步驟 45 4.2.1 待測物濃度調配 45 4.2.2 硫醇修飾DNA探針之還原 47 4.2.3 DNA之固定化程序 48 4.2.4 頻譜干涉SPR實驗步驟 50 4.2.5 動力學參數分析步驟 54 4.2.6 Bicore3000實驗步驟 57 4.3 系統穩定性 58 4.4 實驗結果與分析 60 4.4.1 使用有還原硫醇修飾流感DNA探針(Probe)實驗結果 60 4.4.2動力學參數結果 63 4.4.4 Bicore3000 實驗結果分析 65 第五章 結論與未來展望 67 5.1 結論 67 5.2 未來展望 69 第六章 參考文獻 70

    [1] R. W. Wood, “On remarkable case uneven distribution of light in a diffraction
    grating spectrum,” Philosophical Magazine, vol. 4, pp. 396-402, 1905.
    [2] A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
    [3] E. Krestschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Zeitschrift für Physik, vol. 241, pp. 313, 1971.
    [4] Anna J. Tudos and Richard B.M. Schasfoort, “Handbook of Surface Plasmon Resonance”, Royal society of chemistry, pp.1-14, 2008.
    [5] 邱淑君、林智暉、林永政、李政壕、陳豪勇, “常用市售流感快速檢測試劑之效能比較,” 疫情報導, 21卷8期, pp. 605-617, 2005.
    [6] 林佳蓓、高明輝、方怡雅、王德原、羅吉方, “A型流行性感冒病毒快速診斷試劑效能評估調查研究,” 食品藥物研究年報, 2, pp. 281-287, 2011.
    [7] 楊德明、蔡源成、高甫仁, “生醫光電簡介,” 光學工程第九十六期, pp.1, 2006.
    [8] C. A. Janeway., “Immunobiology: the immune system in health and disease, 5th ed.”, New York: Garland Science 2002.
    [9] 邱國斌與蔡定平, “金屬表面電漿簡介,” 物理雙月刊,廿八卷二期,pp. 472-485,2006。
    [10] S. A. Maier, “Plasmonics: Fundamentals and Applications”, New York, 2007.
    [11] 陳寬任, “基本電漿物理之電腦模擬與理論研究,” 行政院國家科學委員會補助專題研究計畫成果報告,2001.
    [12] M. L. Brongersma and P. G. Kik, “Surface Plasmon Nanophotonics (Springer Series in Optical Sciences)”, pp.27-39, 2007

    [13] J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B, vol. 54, pp. 3-15, 1999.
    [14] G. Zheng, Y. Chen, L. Xu and M. Lai, "Optical characteristics of subwavelength metallic grating coupled porous film surface plasmon resonance sensor with high sensitivity", Optik - International Journal for Light and Electron Optics, vol. 124, no. 21, pp. 4725-4728, 2013.
    [15] 吳宗正,“生物感測器,” 生物技術,九州出版社,第十八章,pp. 24-262,1996。
    [16] A. Hulanicki, S. Glab and F. Ingman, "Chemical sensors: definitions and classification", Pure and Applied Chemistry, vol. 63, no. 9, 1991.
    [17] 楊自森,吳見明,蔡旻龍,莊淳宇,崔豫笳,許志楧, ”分子生醫光電科學與技術,” 物理雙月刊,廿七卷五期,pp. 670-687,2005。
    [18] M. Kashif, A. Ashrif, A. Bakar, N. Arsad and S. Shaari, “Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry,” Sensors, vol. 14, pp. 1591-1593, 2014.
    [19] Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Analytical Chemistry, vol. 80, No.14, pp.5590–5595, 2008.
    [20] C. Wu, Z. Jian, S. Joe and L. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry", Sensors and Actuators B: Chemical, vol. 92, no. 1-2, pp. 133-136, 2003.
    [21] C. Wong, H. Ho, Y. Suen, S. Kong, Q. Chen, W. Yuan and S. Wu, "Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging", Biosensors and Bioelectronics, vol. 24, no. 4, pp. 606-612, 2008.
    [22] A. Kabashin and P. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors", Optics Communications, vol. 150, no. 1-6, pp. 5-8, 1998.
    [23] Z. Zheng, Y. Wan, X. Zhao, and J. S. Zhu, “Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors,” Applied Optics, vol. 48, No. 13, 2009.
    [24] P. Hlubina, M. Duliakova, M. Kadulova, D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Optics Communications, vol. 354, pp. 240-245, 2015.
    [25] N.Brock, J. Hayes, B. Kimbrough, J. Millerd, M. North-Morris, M. Novak and J. C. Wyant, “Dynamic Interferometry,” Proceedings of SPIE Vol. 5875 (SPIE, Bellingham, WA), p. 58750F-1, 2005.
    [26] J.C.Wyant,“Phase-Shifting Interferferometry,” 1987. http://www.optics.arizona.edu/jcwyant/Optics513/ChapterNotes/Chapter05/3.PrintedVersionPhaseShiftingInterferometry.pdf
    [27] Fourier Optics, The McGraw-Hill Companies, Inc, pp. 63-89, 2002.
    [28] 陳怡君,”全域波傳量測系統之理論與實驗:以穩頻雙共振腔脈衝雷射為電子斑點干涉及全像錄/重建光源之架構開發”,國立台灣大學應用力學研究所碩士論文, 2000。
    [29] C.L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, Winnie W. Y. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and Chinion Lin,“Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Applied Optics, Vol. 46, No. 12, pp. 2325-2332, 2007.
    [30] Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface pasmon resonance imaging system,” Optics Letters, Vol. 30, No. 12, pp. 1488-1490, 2005.
    [31] E. Garbusi, C. Pruss, and W. Osten, “Single frame interferogram evaluation,” Applied Optics, Vol. 47, No. 12, pp. 2046-2052, 2008.
    [32] 許志銘,”表面電漿共振感測儀應用於抗體與抗原之動力學分析”,國立清華大學生醫工程與環境科學所分子生醫光電組碩士論文, 2004。
    [33] 林萱, “利用相位式表面電漿共振系統 檢測免疫球蛋白鍵結之應用分析,” 國立中央大學光電科學與工程學系研究所碩士論文, 2012。
    [34] Aleksandar D. Rakić, Aleksandra B. Djurišic, Jovan M. Elazar, and Marian L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, vol. 37, pp. 5271-5283, 1998.
    [35] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B, vol. 6, pp. 4370-4379, 1972.
    [36] SCHOTT Taiwan Ltd., optical glass data sheets, 2015.
    [37] C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” Journal of the Optical Society of America B, vol.17, No. 10, 2000.
    [38] D. Oshannessy, M. Brighamburke, K. Soneson, P. Hensley and I. Brooks, "Determination of Rate and Equilibrium Binding Constants for Macromolecular Interactions Using Surface Plasmon Resonance: Use of Nonlinear Least Squares Analysis Methods", Analytical Biochemistry, vol. 212, no. 2, pp. 457-468, 1993.
    [39] Sigma-Aldrich Co. LLC.2007. Protocol for Thiol-Modified Oligonucleotide Reduction,UnitedState.www.Sigmaaldrich.com/technical-documents/protocols/biology/oligo-reduction. .html. 2007.
    [40] S. Kim, S. Kim, S. Lee, T. Park, K. Byun, S. Kim and M. Shuler, "Detection of Avian Influenza-DNA Hybridization Using Wavelength-scanning Surface Plasmon Resonance Biosensor", Journal of the Optical Society of Korea, vol. 13, no. 3, pp. 392-397, 2009.
    [41] P. Hlubina, J. Lunˇa´cˇek, D. Ciprian and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Optics Communications, vol. 281, pp. 2349–2354, 2008.
    [42] R. Karlsson, A. Michaelsson and L. Mattsson, "Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system", Journal of Immunological Methods, vol. 145, no. 1-2, pp. 229-240, 1991.

    QR CODE