簡易檢索 / 詳目顯示

研究生: 陳俊宏
Jyun-hong Chen
論文名稱: 軟性超高電容器 : 由圖案化碳管承載氫氧化鈷或水合氧化釕擬電容材料製備
Flexible ultracapacitors of patterned electrodes prepared with carbon nanotubes and cobalt hydroxide or hydrous ruthenium oxide pseudocapacitive material
指導教授: 蔡大翔
Dah-shyang Tsai
口試委員: 李奎毅
Kuei-yi Lee
林秀麗
Hsiu-li Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 134
中文關鍵詞: 氧化釕氫氧化鈷奈米碳管超高電容器軟性基板
外文關鍵詞: Ultracapacitor, Carbon nanotubes, α-Co(OH)2, RuO2•xH2O, Flexible substrate
相關次數: 點閱:315下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討軟性基板之碳微管微型化超高電容器製作,並分析承載氫氧化鈷和氧化釕的電容器電化學性質。微型化平面超高電容器兩極為指梳狀電極,指梳間隔20 μm,電容器電極圖型製作是經由黃光微影蝕刻、化學氣相沉積法和電化學沉積法。由於微型化超高電容器尺寸小和薄膜製程技術等優點,未來能輕易的與微機電系統做整合。
    我們研究對稱式電容器 (CNT_CNT) 與非對稱式電容器 (CNT_ α-Co(OH)2/CNT或CNT_ RuO2•xH2O/CNT) 的電化學性質,經由循環伏安法和恆電流充放電測試,分析其比電容值、能量密度和功率密度等電化學性質,其中,更針對非對稱式電容器於放電過程中分析其個別電極之電容及電壓變化。
    在電極製作上,我們能成功用電氣絕緣聚酯膠帶將指叉式碳微管陣列從矽基板移轉至軟性基板上。移轉前我們能先在碳微管圖型電極表面濺鍍一層金以利電流收集,再將電極反轉並移轉至膠帶上,此時,導電性佳的金面已在碳微管底部,並與每根碳微管在電性上有良好的電接觸,因此能有效降低電極阻抗、提升電容器之功率。
    實驗結果顯示,移轉後之超高電容器其功率值遠大於從前本實驗室所製備的硬性電容器的表現。對稱式電容器 (CNT_CNT) 操作電壓1.8 V,電流密度30 Ag-1下能量密度和功率密度分別為2.2 Whkg-1、20.6 kWkg-1;非對稱式電容器 (CNT_α-Co(OH)2/CNT) 操作電壓1.8 V,電流密度35 Ag-1下能量密度和功率密度分別為5.9 Whkg-1、14.5 kWkg-1;非對稱式電容器 (CNT_ RuO2•xH2O/CNT) 操作電壓1.8 V,電流密度32 Ag-1下能量密度和功率密度分別為16.5 Whkg-1、16.2 kWkg-1,雖然釕材料價格上相較鈷貴上許多,但它在電性表現上還是相當具有優勢,非對稱式電容器 (CNT_ RuO2•xH2O /CNT) 更可操作在2 V的電壓下,有利於提高能量密度和功率密度,電流密度40 Ag-1下分別為24.0 Whkg-1、22.9 kWkg-1。
    我們認為非對稱式電容器 (CNT_RuO2•xH2O/CNT) 的高能量密度,基於其複合式電極RuO2•xH2O/CNT之高比電容值,RuO2•xH2O /CNT的電容,相較α-Co(OH)2/CNT高出甚多。


    We have investigated preparation and properties of the miniaturized ultracapacitors loaded with carbon nanotubes (CNT) , α-Co(OH)2, and RuO2˙xH2O on a flexible substrate. These ultracapacitors are featured with 20 μm–spaced comb-like electrodes, which are patterned using the standard technologies of photolithography, chemical vapor deposition, and electrodeposition. Owing to the mini size and the synthesis techniques, they can be easily integrated into portable electronics.
    Correlation between the structure and energy storage property is studied with two ultracapacitors, a symmetric CNT_CNT capacitor and an asymmetric capacitor of CNT_α-Co(OH)2/CNT or CNT_RuO2•xH2O/CNT. The electrode capacitance of each electrode is measured with cyclic voltammetry (CV). Energy and power performance of symmetric and asymmetric capacitor are evaluated using galvanostatic charge-discharge experiment. If appropriate, the voltage and the capacitance of individual electrode of the working cell are analyzed during the cell discharge process.
    On synthesis, a major achievement in this study is to demonstrate that the interdigital pattern of CNT electrode can be transferred from a rigid substrate to a flexible (polymeric) substrate using polyester tape. The transfer step allows us to pre-sputter a layer of gold on the top surface of CNT pattern electrode, after inversion and transfer, the gold-sputtered surface turns into a conductive bottom of CNT pattern. The conductive CNT bottom assures every nanotube is electrically connected to the current collector, reduces the electrode resistance significantly, and make possible a high-power cell.
    Consequently, the power performance of these ultracapacitors is far better than that of the previous ultracapacitors synthesized in our research group. At a current density of 30 Ag-1 and a potential window 1.8 V, the CNT_CNT cell discharges at a power level 20.6 kWkg-1 with energy density 2.2 Wh kg-1. At a current density of 35 Ag-1 and a potential window of 1.8 V, the CNT_α-Co(OH)2/CNT cell discharges at a power level 14.5 kWkg-1 with energy density 5.9 Whkg-1. At current density of 32 Ag-1 and a potential window of 1.8 V, the CNT_RuO2•xH2O/CNT cell discharges at a power level 16.2 kWkg-1 with energy density 16.5 Whkg-1. Although ruthenium costs more than cobalt in material price, its asymmetric cell excels in both energy and power density. Furthermore, the CNT_RuO2•xH2/CNT cell can be operated at a potential window of 2.0 V, at current density of 40 Ag-1, it discharges at a power level 22.9 kWkg-1 with energy density 24.0 Whkg-1.
    We attribute the higher energy density of CNT_RuO2•xH2O /CNT cell to the higher capacitance of its oxide electrode. The CV results indicate the capacitance of RuO2•xH2O/CNT is much higher than that of α-Co(OH)2 /CNT.

    摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 XII 第一章 緒論 1 第二章 文獻回顧與理論基礎 3 2.1 能量儲存裝置概述 3 2.1.1 電容器之分類 5 2.2 超高電容器 (Ultracapacitor) 7 2.2.1 超高電容器之電極材料 8 2.2.2 超高電容器之電解質種類 12 2.3 金屬氧化物電極 16 2.3.1 釕金屬氧化物的研究及探討 16 2.3.2 鈷金屬氧化物的研究及探討 18 2.4 微型化超高電容器 21 2.4.1 指叉式電容器 21 2.4.2 可撓式電容器 24 第三章 實驗方法及步驟 27 3.1 電極材料之製備 27 3.1.1 基材之清洗 27 3.1.2 黃光微影製程 (Photolithography) 27 3.1.3 CVD法成長奈米碳管 30 3.1.4 電極之轉印 32 3.1.5 試片之封裝 35 3.1.6 電化學沉積α - Co(OH)2 36 3.1.7 電化學沉積 RuO2.xH2O 38 3.2 電極材料之特性分析與電性分析 40 3.2.1 結晶結構分析 40 3.2.2 表面結構分析 40 3.2.3 電化學性質分析 41 第四章 結果與討論 43 4.1 奈米碳管電極合成與分析 43 4.2 氧化鈷 / 碳微管複合式電極 50 4.3 承載氧化鈷非對稱指叉式電容器分析 54 4.3.1 電極循環伏安分析 54 4.3.2 恆電流充、放電分析 60 4.3.2.1 對稱式電容器恆電流充、放電分析 61 4.3.2.2 非對稱式電容器恆電流充、放電分析 67 4.3.2.3 非對稱式電容器充放時各別電極之行為 73 4.3.3 對稱式與非對稱式電容器之比較 79 4.3.4 非對稱式電容器不同氧化鈷承載量之比較 86 4.4 承載氧化釕非對稱指叉式電容器電性分析 89 4.4.1 電極循環伏安分析 89 4.4.2 恆電流充、放電分析 93 4.4.2.1 非對稱式電容器充放時各別電極之行為 98 4.4.3 不同擬電容材料電容器之比較 101 第五章 結論 108 參考文獻 112

    [1] C.-C. Hu, Chang, K.-H., Lin, M.-C., Wu, Y.-T., "Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors," Nano Letters, vol. 6, pp. 2690-2695, 2006.
    [2] V. Gupta, et al., "Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox-capacitors," Electrochemistry Communications, vol. 9, pp. 2315-2319, 2007.
    [3] M. Winter, Brodd, R.J., "What are batteries, fuel cells, and supercapacitors?," Chemical Reviews, vol. 104, pp. 4245-4269, 2004.
    [4] B. E. Conway, In Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York: Kluwer-Plenum 1999.
    [5] Electropaedia, "http://www.mpoweruk.com/performance.htm."
    [6] A. Burke, "Ultracapacitors: why, how, and where is the technology," Journal of Power Sources, vol. 91, pp. 37-50, 2000.
    [7] J. R. Miller, Simon, P., "Materials science: Electrochemical capacitors for energy management," Science, vol. 321, pp. 651-652, 2008.
    [8] J. R. Miller, Burke, A.F., "Electrochemical capacitors: Challenges and opportunities for real-world applications," Electrochemical Society Interface, vol. 17, pp. 53-57, 2008.
    [9] T. Ryhänen, Uusitalo, M.A., Ikkala, O., Kärkkäinen, A., "Nanotechnologies for Future Mobile Devices," Cambridge University Press, 2010.
    [10] NUINTEK, "http://www.nuin.co.kr."
    [11] S. K. Bhattacharya, Tummala, R.R. , "Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates," Journal of Materials Science: Materials in Electronics, vol. 11, pp. 253-268, 2000.
    [12] H. Windlass, Raj, P.M., Balaraman, D., Bhattacharya, S.K., Tummala, R.R., et al., "Colloidal processing of polymer ceramic nanocomposite integral capacitors," Transactions on Electronics Packaging Manufacturing, vol. 26, pp. 100-105, 2003.
    [13] P. Kim, Jones, S.C., Hotchkiss, P.J., Haddock, J.N., Kippelen, B., Marder, S.R., Perry, J.W., "Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength," Advanced Materials, vol. 19, pp. 1001-1005, 2007.
    [14] S. Hadzi-Jordanov, Angerstein-Kozlowska, H., Vukovic, M., Conway, B.E., "REVERSIBILITY AND GROWTH BEHAVIOR OF SURFACE OXIDE FILMS AT RUTHENIUM ELECTRODES," Journal of the Electrochemical Society, vol. 125, pp. 1471-1480, 1978.
    [15] B. E. Conway, "Transition from 'supercapacitor' to 'battery' behavior in electrochemical energy storage," Journal of the Electrochemical Society, vol. 138, pp. 1539-1548, 1991.
    [16] X. Zhao, et al., "The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices," Nanoscale, vol. 3, p. 839, 2011.
    [17] A. Burke, Arulepp, M., Electrochem. Soc. Proc., vol. 2001-21, p. 576, 2001.
    [18] E. Frackowiak and F. Béguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, pp. 937-950, 2001.
    [19] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
    [20] Q.-L. Chen, et al., "Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors," Electrochimica Acta, vol. 49, pp. 4157-4161, 2004.
    [21] A. B. Dalton, Collins, S., Muñoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., "Super-tough carbon-nanotube fibres " Nature, vol. 423, p. 703, 2003.
    [22] S. C. Niu, E.K., Hoch, R., Moy, D., Tennent, H., "High power electrochemical capacitors based on carbon nanotube electrodes," Applied Physics Letters, vol. 70, pp. 1480-1482, 1997.
    [23] K. H. An, Kim, W.S., Park, Y.S., Moon, J.-M., Bae, D.J., Lim, S.C., Lee, Y.S., , "Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes," Advanced Funtional Materials, vol. 11, pp. 387-392, 2001.
    [24] 廖國翔, "The past、Present and Future of Supercapacitors," 2007.
    [25] F. Fusalba, Gouérec, P., Villers, D., Belanger, D., "Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors," Journal of the Electrochemical Society, vol. 148, pp. A1-A6, 2001.
    [26] Y.-K. Zhou, He, B.-L., Zhou, W.-J., Huang, J., Li, X.-H., Wu, B., Li, H.-L., "Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites," Electrochimica Acta, vol. 49, pp. 257-262, 2004.
    [27] B. Dong, He, B.-L., Xu, C.-L., Li, H.-L., "Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor," Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 143, pp. 7-13, 2007.
    [28] C. Arbizzani, Mastragostino, M., Meneghello, L., "Polymer-based redox supercapacitors: A comparative study," Electrochimica Acta, vol. 41, pp. 21-26, 1996.
    [29] K. H. An, Jeon, K.K., Heo, J.K., Lim, S.C., Bae, D.J., Lee, Y.H., "High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole," Journal of the Electrochemical Society, vol. 149, pp. A1058-A1068, 2002.
    [30] R. K. Das, Liu, B., Reynolds, J.R., Rinzler, A.G., "Engineered macroporosity in single-wall carbon nanotube films," Nano Letters, vol. 9, pp. 677-683, 2009.
    [31] K.-W. Nam, Lee, C.-W., Yang, X.-Q., Cho, B.W., Yoon, W.-S., Kim, K.-B., "Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes," Journal of Power Sources, vol. 188, pp. 323-331, 2009.
    [32] I.-H. Kim, Kim, J.-H., Cho, B.-W., Kim, K.-B., "Pseudocapacitive properties of electrochemically prepared vanadium oxide on carbon nanotube film substrate," Journal of the Electrochemical Society, vol. 153, pp. A1451-A1458, 2006.
    [33] I.-H. Kim, Kim, J.-H., Cho, B.-W., Lee, Y.-H., Kim, K.-B., "Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications," Journal of the Electrochemical Society, vol. 153, pp. A989-A996, 2006.
    [34] K.-W. Nam, Kim, K.-H., Lee, E.-S., Yoon, W.-S., Yang, X.-Q., Kim, K.-B., "Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates," Journal of Power Sources, vol. 182, pp. 642-652, 2008.
    [35] H. Zheng, Tang, F., Lim, M., Rufford, T., Mukherji, A., Wang, L., Lu, G.(M.), "Electrochemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films," Journal of Power Sources, vol. 193, pp. 930-934, 2009.
    [36] S. Talapatra, Kar, S., Pal, S.K., Vajtai, R., Ci, L., Victor, P., Shaijumon, M.M., "Direct growth of aligned carbon nanotubes on bulk metals. ," Nature nanotechnology, vol. 1, pp. 112-116, 2006.
    [37] C. Emmenegger, et al., "Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials," Journal of Power Sources, vol. 124, pp. 321-329, 2003.
    [38] Y. Zhang, et al., "Progress of electrochemical capacitor electrode materials: A review," International Journal of Hydrogen Energy, vol. 34, pp. 4889-4899, 2009.
    [39] H. Wang and M. Yoshio, "Effect of cation on the performance of AC/graphite capacitor," Electrochemistry Communications, vol. 10, pp. 382-386, 2008.
    [40] W. Lu, Fadeev, A.G., Qi, B., Smela, E., Mattes, B.R., Ding, J., Spinks, G.M., "Use of ionic liquids for π-conjugated polymer electrochemical devices " Science, vol. 297, pp. 983-987, 2002.
    [41] R. D. Rogers, Seddon, K.R., "Ionic Liquids - Solvents of the Future? ," Science, vol. 302, pp. 792-793, 2003.
    [42] M. C. Buzzeo, Evans, R.G., Compton, R.G., "Non-haloaluminate room-temperature ionic liquids in electrochemistry - A review " ChemPhysChem, vol. 5, pp. 1106-1120, 2004.
    [43] K. T. Fukushima, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N., Aida, T., "Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes," Science, vol. 300, pp. 2072-2074, 2003.
    [44] V. Khomenko, et al., "High-voltage asymmetric supercapacitors operating in aqueous electrolyte," Applied Physics A, vol. 82, pp. 567-573, 2005.
    [45] V. Khomenko, et al., "Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium," Journal of Power Sources, vol. 153, pp. 183-190, 2006.
    [46] C.-C. Hu, Chen, W.-C., "Effects of substrates on the capacitive performance of RuO x•nH2O and activated carbon-RuOx electrodes for supercapacitors," Electrochimica Acta, vol. 49, pp. 3469-3477, 2004.
    [47] J. P. Zheng, Cygan, P.J., Jow, T.R., "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors," Journal of the Electrochemical Society, vol. 142, pp. 2699-2703, 1995.
    [48] Y. M. Vol'fkovich, Serdyuk, T.M., "Electrochemical capacitors," Russian Journal of Electrochemistry, vol. 38, pp. 935-958, 2002.
    [49] W. Dmowski, Egami, T., Swider-Lyons, K.E., Love, C.T., Rolison, D.R., "Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering," Journal of Physical Chemistry B, vol. 106, pp. 12677-12683, 2002.
    [50] D. R. Rolison, Long, J.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourg, M.E., (...), Lubers, A.M., "Multifunctional 3D nanoarchitectures for energy storage and conversion," Chemical Society Reviews, vol. 38, pp. 226-252, 2009.
    [51] T. P. Gujar, Shinde, V.R., Lokhande, C.D., Kim, W.-Y., Jung, K.-D., Joo, O.-S., "Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor," Electrochemistry Communications, vol. 9, pp. 504-510, 2007.
    [52] C. Sassoye, Laberty, C., Khanh, H.L., Cassaignon, S., Boissière, C., Antonietti, M., Sanchez, C., "Block-copolymer-templated synthesis of electroactive ruo2-based mesoporous thin films," Advanced Functional Materials, vol. 19, pp. 1922-1929, 2009.
    [53] Y.-F. Ke, Tsai, D.-S., Huang, Y.-S., "Electrochemical capacitors of RuO2 nanophase grown on LiNbO 3(100) and sapphire(0001) substrates," Journal of Materials Chemistry, vol. 15, pp. 2122-2127, 2005.
    [54] W. Sugimoto, Iwata, H., Yasunaga, Y., Murakami, Y., Takasu, Y., "Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage," Angewandte Chemie - International Edition, vol. 42, pp. 4092-4096, 2003.
    [55] Y. Wang, Foo, C.Y., Hoo, T.K., Ng, M., Lin, J., "Designed smart system of the sandwiched and concentric architecture of RuO2/C/RuO2 for high performance in electrochemical energy storage," Chemistry - A European Journal, vol. 16, pp. 3598-3603, 2010.
    [56] J. W. Long, Swider, K.E., Merzbacher, C.I., Rolison, D.R., "Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials," Langmuir, vol. 15, pp. 780-784, 1999.
    [57] R. S. Jayashree, Kamath, P.V., "Electrochemical synthesis of α-cobalt hydroxide," Journal of Materials Chemistry, vol. 9, pp. 961-963, 1999.
    [58] A. S. Aricò, Bruce, P., Scrosati, B., Tarascon, J.-M., Van Schalkwijk, W., "Nanostructured materials for advanced energy conversion and storage devices," Nature Materials, vol. 4, pp. 366-377, 2005.
    [59] P. Simon, Gogotsi, Y., "Materials for electrochemical capacitors " Nature Materials, vol. 7, pp. 845-854, 2008.
    [60] V. Gupta, Gupta, S., Miura, N., "Al-substituted α-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors," Journal of Power Sources, vol. 177, pp. 685-689, 2008.
    [61] S.-L. Chou, Wang, J.-Z., Liu, H.-K., Dou, S.-X., "electrochemical deposition of porous Co(OH)2 nanoflake films on stainless steel mesh for flexible supercapacitors," Journal of the Electrochemical Society, vol. 155, pp. A926-A929, 2008.
    [62] W.-J. Zhou, Zhang, J., Xue, T., Zhao, D.-D., Li, H.-L., "Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors," Journal of Materials Chemistry, vol. 18, pp. 905-910, 2008.
    [63] I. G. Casella, Gatta, M., "Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions," Journal of Electroanalytical Chemistry, vol. 534, pp. 31-38, 2002.
    [64] DIGITIMES, "http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=13&Cat=&Cat1=&id=175201."
    [65] J.-H. Sung, Kim, S.-J., Jeong, S.-H., Kim, E.-H., Lee, K.-H., "Flexible micro-supercapacitors," Journal of Power Sources, vol. 162, pp. 1467-1470, 2006.
    [66] W. Sun, Chen, X., "Fabrication and tests of a novel three dimensional micro supercapacitor," Microelectronic Engineering, vol. 86, pp. 1307-1310, 2009.
    [67] H.-K. Im, Cho, S.-H., Ok, Y.-W., Seong, T.-Y., Yoon, Y.S., "All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes " Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 21, pp. 949-952, 2003.
    [68] C. C. Ho, Steingart, D.A., Salminen, J.P., Sin, W.H., Rantala, T.M.K., Evans, J.W., Wright, P.K., "Proceedings of the 6th Workshop on Micro- and Nanotechnology for Power Generation and Energy Conversion Berkeley, CA, November 29 to December 1,2006."
    [69] D. Pech, et al., "Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor," Journal of Power Sources, vol. 195, pp. 1266-1269, 2010.
    [70] 工研院IEK, "http://www.eettaiwan.com/ART_8800472879_480102_NT_5b445882.HTM."
    [71] S. K. Mondal and N. Munichandraiah, "Anodic deposition of porous RuO2 on stainless steel for supercapacitor studies at high current densities," Journal of Power Sources, vol. 175, pp. 657-663, 2008.
    [72] W. P. B. Conway, "Peculiarities and advantages of hybrid capacitor devices on combination of capacitor and battery type electrodes," in The 12th International Seminar on DLC and Similar Energy Storage Devices, Deerfield Beach, FL, USA, 2002.
    [73] C. Yuan, et al., "A novel method to synthesize whisker-like Co(OH)2 and its electrochemical properties as an electrochemical capacitor electrode," Electrochimica Acta, vol. 56, pp. 115-121, 2010.

    無法下載圖示 全文公開日期 2016/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE