簡易檢索 / 詳目顯示

研究生: 劉子維
Zei-Wei Liu
論文名稱: 鎂基複合材料的機械性質與熱傳導研究
Mechanical Properties and Thermal Conductivity of Mg-matrix composite
指導教授: 丘群
Chun Chiu
口試委員: 丘群
Chun Chiu
黃崧任
SONG-REN HUANG
陳士勛
SHI-XUN CHEN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 133
中文關鍵詞: AZ91鎂合金石墨片奈米碳管石墨烯鎂基複合材料機械性質熱傳導率
外文關鍵詞: AZ91 magnesium alloy, graphite flakes, nanocarbon tubes, graphene, magnesium-based composites, mechanical properties, thermal conductivity
相關次數: 點閱:234下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以AZ91合金作為基材,添加微量石墨片和奈米碳管以及石墨烯。透過攪拌鑄造法製成鎂基複合材料,分別製成合金材料,並進行成分分析、顯微結構的觀察、機械性質測試、熱傳導係數分析,探討分別添加石墨片和奈米碳管以及石墨烯對 AZ91合金之相變化以及機械性質、熱傳導係數的影響。
    研究結果顯示,分別添加石墨片和奈米碳管以及石墨烯之鎂基複合材料,其相組成為?-Mg、Al8Mn5、Mg17Al12,並無新相出現。從晶粒尺寸可發現分別添加石墨片和奈米碳管以及石墨烯可造成細晶強化之效果,從添加量0.2 wt.%添加至0.6 wt.%,AZ91原材之151 ??下降至石墨烯98 ??。硬度值相比於AZ91,從原本72 HV提升至84 HV,以及石墨烯之抗拉強度明顯提升,從AZ91之123.5 MPa上升至178.1 MPa。降伏強度則從AZ91之76.9 MPa提升至134.4 MPa,延伸率從AZ91之4.7 %上升至7.4 %。
    熱傳導係數由AZ91原本的46.50 W/m.k上升至50.37W/m.k,並無大幅提升,原因為攪拌鑄造無法將強化相均勻分散,造成部分團聚的現象以及孔洞的出現,這對於強度以及晶粒尺寸,皆有明顯的影響。


    In this study, AZ91 alloy was used as the base material, and trace amounts of graphite flakes and nanocarbon tubes as well as graphene were added. The magnesium-based composites were produced by stir casting method, and the alloys were separately produced. Composition analysis, microstructure observation, mechanical property test, and thermal conductivity analysis were carried out to investigate the effects of the addition of graphite flakes, nanocarbon tubes, and graphene on the changes in AZ91 alloy as well as on the mechanical properties and thermal conductivity.
    The results show that the phase composition of the magnesium-based composites with the addition of graphite flakes, nanocarbon tubes, and graphene is ?-Mg, Al8Mn5, and Mg17Al12, and no new phases appear. From the grain size, it can be found that the addition of graphite flakes and nanocarbon tubes as well as graphene can cause the effect of fine-crystalline enhancement, respectively, but with the increase in the amount of addition the grain size increases, and the best fine-crystalline enhancement in the grain size of the magnesium-based composites is the graphene from 98 ?? to 128 ??. The hardness value increased from 72 HV to 84 HV compared to AZ91, and the tensile strength of graphene increased significantly from 152.2 MPa to 178.1 MPa, the yield strength increased from 125.8 MPa to 134.4 MPa, and elongation increased from 7.0 % to 7.4 %.
    The thermal conductivity increased from 46.50 W/m.k of AZ91 to 50.37 W/m.k, which is not a significant increase. The reason is that the stir casting cannot disperse the reinforced phase uniformly, resulting in the phenomenon of partial agglomeration and the appearance of holes, which has a significant effect on the strength and grain size.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 viii 表目錄 xi 第ㄧ章 前言 1 第二章 文獻回顧 3 2.1 鎂與鎂合金的介紹 3 2.1.1 鎂的基本性質介紹 3 2.1.2 鎂合金的介紹 3 2.1.3 鎂合金添加的合金元素 4 2.1.4 鎂合金命名規則 5 2.2 鎂合金之強化 7 2.2.1 鎂合金強化之方法 7 2.2.2 鎂合金強化機制 8 2.3 鎂合金鑄造 11 2.4 鎂基複合材料熱傳導 13 2.5 鎂基複合材料文獻回顧 15 2.6 研究動機 16 第三章 實驗方法 18 3.1 實驗計畫 18 3.2 實驗材料 19 3.3 熔煉設備 19 3.3.1 攪拌鑄造熔煉爐 19 3.3.2 鎂合金材料製備步驟 20 3.4試片製備 22 3.5分析儀器 24 3.5.1 光學顯微鏡 24 3.5.2 X光繞射儀 25 3.5.3 高解析度場發射掃描式電子顯微鏡 27 3.5.4 維克式硬度計 28 3.5.5 密度測量與孔隙率計算 29 3.5.6 熱傳導分析儀 30 3.5.7 拉伸試驗機 31 第四章 結果與討論 34 4.1顯微組織觀察與成分分析 34 4.1.1 AZ91鎂合金原材 34 4.1.2 AZ91+石墨片(Graphite Flake ,GF) 40 4.1.3 AZ91 + 奈米碳管(Carbon Nanotube ,CNT) 55 4.1.3 AZ91 + 石墨烯(Graphene Plateles,GNP) 69 4.2 晶粒尺寸分析 84 4.3 機械性質測試 87 4.3.1 維克式硬度試驗 87 4.3.2孔隙率計算 90 4.3.3 拉伸試驗 92 4.3.3 拉伸破斷面觀察 94 4.4 鎂基複合材料熱傳導分析結果 97 4.3 實驗結果與討論 100 第五章 結論 105 參考文獻 107

    [1] Luo, A. A. Recent Magnesium Alloy Development for Elevated Temperature Applications. Int. Mater. Rev. 2004, 49 (1), 13–30. https://doi.org/10.1179/095066004225010497.
    [2] Soni, S. K.; Thomas, B.; Kar, V. R. A Comprehensive Review on CNTs and CNT-Reinforced Composites: Syntheses, Characteristics and Applications. Mater. Today Commun. 2020, 25, 101546. https://doi.org/10.1016/j.mtcomm.2020.101546.
    [3] Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56–58. https://doi.org/10.1038/354056a0.
    [4] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666–669. https://doi.org/10.1126/science.1102896.
    [5] Mordike, B. L.; Ebert, T. Magnesium. Mater. Sci. Eng. A 2001, 302 (1), 37–45. https://doi.org/10.1016/S0921-5093(00)01351-4.
    [6] Xu, T.; Yang, Y.; Peng, X.; Song, J.; Pan, F. Overview of Advancement and Development Trend on Magnesium Alloy. J. Magnes.Alloys2019,7(3),536–544. https://doi.org/10.1016/j.jma.2019.08.001.
    [7] Yang, Y.; Xiong, X.; Chen, J.; Peng, X.; Chen, D.; Pan, F. Research Advances in Magnesium and Magnesium Alloys Worldwide in 2020. J.Magnes.Alloys2021,9(3),705–747. https://doi.org/10.1016/j.jma.2021.04.001.
    [8] Kainer, K. U.; Von Buch, F. The Current State of Technology and Potential for Further Development of Magnesium Applications. In Magnesium– Alloys and Technology; Kainer, K. U., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, FRG, 2003; pp 1–22. https://doi.org/10.1002/3527602046.ch1.
    [9] Neh, K.; Ullmann, M.; Kawalla, R. Effect of Grain Refining Additives on Microstructure and Mechanical Properties of the Commercial Available Magnesium Alloys AZ31 and AM50. Mater. Today Proc. 2015, 2, S219–S224. https://doi.org/10.1016/j.matpr.2015.05.017.
    [10] Wei, L. Y.; Dunlop, G. L.; Westengen, H. Precipitation Hardening of Mg-Zn and Mg-Zn-RE Alloys. Metall. Mater. Trans. A 1995, 26 (7), 1705–1716. https://doi.org/10.1007/BF02670757.
    [11] Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Adsorption of Phosphate from Seawater on Calcined MgMn-Layered Double Hydroxides. J. Colloid Interface Sci. 2005, 290 (1), 45–51. https://doi.org/10.1016/j.jcis.2005.04.025.
    [12] Eckermann, F.; Suter, T.; Uggowitzer, P. J.; Afseth, A.; Schmutz, P. The Influence of MgSi Particle Reactivity and Dissolution Processes on Corrosion in Al–Mg–Si Alloys. Electrochimica Acta 2008, 54 (2), 844–855. https://doi.org/10.1016/j.electacta.2008.05.078.
    [13] Laser, T.; Hartig, Ch.; Nürnberg, M. R.; Letzig, D.; Bormann, R. The Influence of Calcium and Cerium Mischmetal on the Microstructural Evolution of Mg–3Al–1Zn during Extrusion and Resulting Mechanical Properties. Acta Mater. 2008, 56 (12), 2791–2798. https://doi.org/10.1016/j.actamat.2008.02.010.
    [14] Habibnejad-Korayem, M.; Mahmudi, R.; Poole, W. J. Enhanced Properties of Mg-Based Nano-Composites Reinforced with Al2O3 Nano-Particles. Mater. Sci. Eng. A 2009, 519 (1–2), 198–203. https://doi.org/10.1016/j.msea.2009.05.001.
    [15] Neh, K.; Ullmann, M.; Kawalla, R. Effect of Grain Refining Additives on Microstructure and Mechanical Properties of the Commercial Available Magnesium Alloys AZ31 and AM50. Mater. Today Proc. 2015, 2, S219–S224. https://doi.org/10.1016/j.matpr.2015.05.017.
    [16] Yavari, P.; Mohamed, F. A.; Langdon, T. G. Creep and Substructure Formation in an Al-5% Mg Solid Solution Alloy. Acta Metall. 1981, 29 (8), 1495–1507. https://doi.org/10.1016/0001-6160(81)90184-X.
    [17] Leyson, G. P. M.; Curtin, W. A. Friedel vs. Labusch: The Strong/Weak Pinning Transition in Solute Strengthened Metals. Philos.Mag.2013,93(19),2428–2444. https://doi.org/10.1080/14786435.2013.776718.
    [18] Li, Y.; Bushby, A. J.; Dunstan, D. J. The Hall–Petch Effect as a Manifestation of the General Size Effect. Proc. R. Soc. Math. Phys. Eng.Sci.2016,472(2190),20150890. https://doi.org/10.1098/rspa.2015.0890.
    [19] Ojediran, S. O.; Ajaja, O. The Bailey-Orowan Equation. J. Mater. Sci. 1988, 23 (11), 4037–4040. https://doi.org/10.1007/BF01106832.
    [20] Nie, J.-F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater.Trans.A2012,43(11),3891–3939. https://doi.org/10.1007/s11661-012-1217-2.
    [21] Guinea, F.; Rose, J. H.; Smith, J. R.; Ferrante, J. Scaling Relations in the Equation of State, Thermal Expansion, and Melting of Metals. Appl. Phys. Lett. 1984, 44 (1), 53–55. https://doi.org/10.1063/1.94549.
    [22] Dezi, L.; Gara, F.; Leoni, G.; Tarantino, A. M. Time-Dependent Analysis of Shear-Lag Effect in Composite Beams. J. Eng. Mech. 2001,127(1),71–79.https://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(71).
    [23] Qi, Q. Evaluation of Sliding Wear Behavior of Graphite Particle-Containing Magnesium Alloy Composites. Trans. Nonferrous Met. Soc. China 2006, 16 (5), 1135–1140. https://doi.org/10.1016/S1003-6326(06)60390-7.
    [24] Dobrzański, L. A.; Tański, T.; Čížek, L.; Brytan, Z. Structure and Properties of Magnesium Cast Alloys. J. Mater. Process. Technol. 2007,192–193,567–574. https://doi.org/10.1016/j.jmatprotec.2007.04.045.
    [25] Liu, I.-S. On Fourier’s Law of Heat Conduction. Contin. Mech. Thermodyn.1990,2(4),301–305. https://doi.org/10.1007/BF01129123.
    [26] JP Holman. Heat Transfer, 1986, McGraw-Hill.
    [27] 張天曜. 薄膜之熱傳導係數量測方法研究, 2008,國立台灣大學機械工程所碩士論文.
    [28] Wu, Y. W.; Wu, K.; Deng, K. K.; Nie, K. B.; Wang, X. J.; Zheng, M. Y.; Hu, X. S. Damping Capacities and Microstructures of Magnesium Matrix Composites Reinforced by Graphite Particles. Mater.Des.2010,31(10),4862–4865. https://doi.org/10.1016/j.matdes.2010.05.033.
    [29] Kandemir, S.; Gavras, S.; Dieringa, H. High Temperature Tensile, Compression and Creep Behavior of Recycled Short Carbon Fibre Reinforced AZ91 Magnesium Alloy Fabricated by a High Shearing Dispersion Technique. J. Magnes. Alloys 2021, 9 (5), 1753–1767. https://doi.org/10.1016/j.jma.2021.03.029.
    [30] Rashad, M.; Pan, F.; Tang, A.; Asif, M.; Aamir, M. Synergetic Effect of Graphene Nanoplatelets (GNPs) and Multi-Walled Carbon Nanotube (MW-CNTs) on Mechanical Properties of Pure Magnesium. J.AlloysCompd.2014,603,111–118. https://doi.org/10.1016/j.jallcom.2014.03.038.
    [31] Zhang, L.; Deng, K.; Nie, K.; Wang, C.; Xu, C.; Shi, Q. Achieving Strength-Thermal Conductivity Synergy in Mg Bulk System via Introducing Oriented Graphite Flakes into Mg-Zn-Ca Alloy. Compos. Commun.2023,37,101451. https://doi.org/10.1016/j.coco.2022.101451.
    [32] Hou, J.; Du, W.; Wang, Z.; Li, S.; Liu, K.; Du, X. Combination of Enhanced Thermal Conductivity and Strength of MWCNTs Reinforced Mg-6Zn Matrix Composite. J. Alloys Compd. 2020, 838, 155573. https://doi.org/10.1016/j.jallcom.2020.155573.
    [33] Du, X.; Du, W.; Wang, Z.; Liu, K.; Li, S. Simultaneously Improved. Mechanical and Thermal Properties of Mg-Zn-Zr Alloy Reinforced by Ultra-Low Content of Graphene Nanoplatelets. Appl. Surf. Sci. 2021, 536, 147791. https://doi.org/10.1016/j.apsusc.2020.147791.
    [34] Singh, I. B.; Singh, M.; Das, S. A Comparative Corrosion Behavior of Mg, AZ31 and AZ91 Alloys in 3.5% NaCl Solution. J. Magnes. Alloys2015,3(2),142–148. https://doi.org/10.1016/j.jma.2015.02.004.
    [35] C, B.; N, H.; K.U., K. U. K. AUTOMOTIVE APPLICATIONS OF MAGNESIUM AND ITS ALLOYS. 2004.
    [36] Li, S.; Yang, X.; Hou, J.; Du, W. A Review on Thermal Conductivity of Magnesium and Its Alloys. J. Magnes. Alloys 2020, 8 (1), 78–90. https://doi.org/10.1016/j.jma.2019.08.002.
    [37] Girish, B. M.; Satish, B. M.; Sarapure, S.; Somashekar, D. R.; Basawaraj. Wear Behavior of Magnesium Alloy AZ91 Hybrid Composite Materials. Tribol. Trans. 2015, 58 (3), 481–489. https://doi.org/10.1080/10402004.2014.987858.
    [38] Dobrzański, L. A.; Tański, T.; Čížek, L.; Brytan, Z. Structure and Properties of Magnesium Cast Alloys. J. Mater. Process. Technol. 2007,192–193,567–574. https://doi.org/10.1016/j.jmatprotec.2007.04.045.
    [39] Wu, Y. W.; Wu, K.; Deng, K. K.; Nie, K. B.; Wang, X. J.; Hu, X. S.; Zheng, M. Y. Damping Capacities and Tensile Properties of Magnesium Matrix Composites Reinforced by Graphite Particles. Mater.Sci.Eng.A2010,527(26),6816–6821. https://doi.org/10.1016/j.msea.2010.07.050.
    [40] Russell, K. C. Grain Boundary Nucleation Kinetics. Acta Metall. 1969, 17 (8), 1123–1131. https://doi.org/10.1016/0001-6160(69)90057-1.
    [41] Say, Y.; Guler, O.; Dikici, B. Carbon Nanotube (CNT) Reinforced Magnesium Matrix Composites: The Effect of CNT Ratio on Their Mechanical Properties and Corrosion Resistance. Mater. Sci. Eng. A 2020, 798, 139636. https://doi.org/10.1016/j.msea.2020.139636.
    [42] Li, Q.; Viereckl, A.; Rottmair, C. A.; Singer, R. F. Improved Processing of Carbon Nanotube/Magnesium Alloy Composites. Compos. Sci. Technol. 2009, 69 (7–8), 1193–1199. https://doi.org/10.1016/j.compscitech.2009.02.020.
    [43] Goh, C. S.; Wei, J.; Lee, L. C.; Gupta, M. Ductility Improvement and Fatigue Studies in Mg-CNT Nanocomposites. Compos. Sci. Technol. 2008,68(6),1432–1439. https://doi.org/10.1016/j.compscitech.2007.10.057.
    [44] Chen, L.-Y.; Konishi, H.; Fehrenbacher, A.; Ma, C.; Xu, J.-Q.; Choi, H.; Xu, H.-F.; Pfefferkorn, F. E.; Li, X.-C. Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites. Scr. Mater. 2012, 67 (1), 29–32. https://doi.org/10.1016/j.scriptamat.2012.03.013.
    [45] Li, C. D.; Wang, X. J.; Liu, W. Q.; Shi, H. L.; Ding, C.; Hu, X. S.; Zheng, M. Y.; Wu, K. Effect of Solidification on Microstructures and Mechanical Properties of Carbon Nanotubes Reinforced Magnesium Matrix Composite. Mater. Des. 2014, 58, 204–208. https://doi.org/10.1016/j.matdes.2014.01.015.
    [46] Shin, S. E.; Choi, H. J.; Shin, J. H.; Bae, D. H. Strengthening Behavior of Few-Layered Graphene/Aluminum Composites. Carbon 2015, 82, 143–151. https://doi.org/10.1016/j.carbon.2014.10.044.
    [47] Fadavi Boostani, A.; Yazdani, S.; Taherzadeh Mousavian, R.; Tahamtan, S.; Azari Khosroshahi, R.; Wei, D.; Brabazon, D.; Xu, J. Z.; Zhang, X. M.; Jiang, Z. Y. Strengthening Mechanisms of Graphene Sheets in Aluminium Matrix Nanocomposites. Mater. Des. 2015, 88, 983–989. https://doi.org/10.1016/j.matdes.2015.09.063.
    [48] Xiao, H.; Ma, G.; Ye, J.; He, Y. Preparation of Graphene Reinforced AZ31BMagnesium-BasedCompositesbyStirring Casting.Vacuum2021,191,110281. https://doi.org/10.1016/j.vacuum.2021.110281.
    [49] Lunder, O.; Lein, J. E.; Aune, T. K.; Nisancioglu, K. The Role of Mg 17 Al 12 Phase in the Corrosion of Mg Alloy AZ91. CORROSION 1989, 45 (9), 741–748. https://doi.org/10.5006/1.3585029.
    [50] Zhang, Z.; Chen, D. Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength. Scr. Mater. 2006, 54 (7), 1321–1326. https://doi.org/10.1016/j.scriptamat.2005.12.017.
    [51] Arab, M.; Marashi, S. P. H. Graphene Nanoplatelet (GNP)-Incorporated AZ31 Magnesium Nanocomposite: Microstructural, Mechanical and Tribological Properties. Tribol. Lett. 2018, 66 (4), 156. https://doi.org/10.1007/s11249-018-1108-9.
    [52] Sun, X.; Wang, C.; Deng, K.; Nie, K.; Zhang, X.; Xiao, X. High Strength SiCp/AZ91 Composite Assisted by Dynamic Precipitated Mg17Al12 Phase. J. Alloys Compd. 2018, 732, 328–335. https://doi.org/10.1016/j.jallcom.2017.10.164.
    [53] Pavlatou, E. A.; Stroumbouli, M.; Gyftou, P.; Spyrellis, N. Hardening Effect Induced by Incorporation of SiC Particles in Nickel Electrodeposits. J. Appl. Electrochem. 2006, 36 (4), 385–394. https://doi.org/10.1007/s10800-005-9082-y.
    [54] Ammal, M. A.; Sudha, J. Microstructural Evolution & Mechanical. Properties of ZrO 2 /GNP and B 4 C/GNP Reinforced AA6061 Friction Stir Processed Surface Composites - A Comparative Study. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237 (8), 1149–1160. https://doi.org/10.1177/09544054221126942.
    [55] C, H. Decoration of Graphene-Carbon Nanotube Nanostructures: Synthesis and Applications. 2021.
    [56] Luo, X.; Yang, G.; Schubert, D. W. Electrically Conductive Polymer Composite Containing Hybrid Graphene Nanoplatelets and Carbon Nanotubes: Synergistic Effect and Tunable Conductivity Anisotropy. Adv. Compos. Hybrid Mater. 2022, 5 (1), 250–262. https://doi.org/10.1007/s42114-021-00332-y.
    [57] Huang, P. Theay on Powder Metallurgy. 1982.
    [58] Lü, Y. Z.; Wang, Q. D.; Ding, W. J.; Zeng, X. Q.; Zhu, Y. P. Fracture Behavior of AZ91 Magnesium Alloy. Mater. Lett. 2000, 44 (5), 265–268. https://doi.org/10.1016/S0167-577X(00)00041-0.
    [59] Irshad, H. M.; Hakeem, A. S.; Raza, K.; Baroud, T. N.; Ehsan, M. A.; Ali, S.; Tahir, M. S. Design, Development and Evaluation of Thermal PropertiesofPolysulphone–CNT/GNPNanocomposites. Nanomaterials2021,11(8),2080. https://doi.org/10.3390/nano11082080.
    [60] Rashad, M.; Pan, F.; Tang, A.; Asif, M.; She, J.; Gou, J.; Mao, J.; Hu, H. Development of Magnesium-Graphene Nanoplatelets Composite. J.Compos.Mater.2015,49(3),285–293. https://doi.org/10.1177/0021998313518360.
    [61] Jiang, J.-W.; Wang, B.-S.; Wang, J.-S.; Park, H. S. A Review on the Flexural Mode of Graphene: Lattice Dynamics, Thermal Conduction, Thermal Expansion, Elasticity and Nanomechanical Resonance. J. Phys.Condens.Matter2015,27(8),083001. https://doi.org/10.1088/0953-8984/27/8/083001.
    [62] Wang, C.; Deng, K.; Bai, Y. Microstructure, and Mechanical and Wear Properties of Grp/AZ91 Magnesium Matrix Composites. Materials 2019, 12 (7), 1190. https://doi.org/10.3390/ma12071190.
    [63] Chen, L.-Y.; Konishi, H.; Fehrenbacher, A.; Ma, C.; Xu, J.-Q.; Choi, H.; Xu, H.-F.; Pfefferkorn, F. E.; Li, X.-C. Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites.Scr.Mater.2012,67(1),29–32. https://doi.org/10.1016/j.scriptamat.2012.03.013.
    [64] Kandemir, S. Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing. J. Mater. Eng. Perform. 2018, 27 (6), 3014–3023. https://doi.org/10.1007/s11665-018-3391-x.
    [65] Ganguly, S.; Reddy, S. T.; Majhi, J.; Nasker, P.; Mondal, A. K. Enhancing Mechanical Properties of Squeeze-Cast AZ91 Magnesium Alloy by Combined Additions of Sb and SiC Nanoparticles. Mater. Sci.Eng.A2021,799,140341. https://doi.org/10.1016/j.msea.2020.140341.
    [66] Liang, J.; Li, H.; Qi, L.; Tian, W.; Li, X.; Chao, X.; Wei, J. Fabrication. and Mechanical Properties of CNTs/Mg Composites Prepared by Combining Friction Stir Processing and Ultrasonic Assisted Extrusion. J.AlloysCompd.2017,728,282–288. https://doi.org/10.1016/j.jallcom.2017.09.009.
    [67] Yoon, D.; Son, Y.-W.; Cheong, H. Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Lett. 2011, 11 (8), 3227–3231. https://doi.org/10.1021/nl201488g.
    [68]林穎志. 鎂基復合材料機械性質及其熱傳導性質之研究, 2018,國立臺灣科技大學機械工程所碩士論文.
    [69] Zhao, Z.; Zhao, R.; Bai, P.; Du, W.; Guan, R.; Tie, D.; Naik, N.; Huang, M.; Guo, Z. AZ91 Alloy Nanocomposites Reinforced with Mg-Coated Graphene: Phases Distribution, Interfacial Microstructure, and Property Analysis. J. Alloys Compd. 2022, 902, 163484. https://doi.org/10.1016/j.jallcom.2021.163484.
    [70]蘇健忠. 不同碳型態之碳\鋁複材之熱物性研究, 1999, 國立交通大學工學院精密與自動化工程學程碩士論文.

    QR CODE