簡易檢索 / 詳目顯示

研究生: 崔恩銓
En-chuan Tsui
論文名稱: 提示音音調高低應用於尋路系統之研究
Auditory Signals with Different Pitch Combinations Applied to Wayfinding System
指導教授: 陳建雄
Chien-Hsiung Chen
口試委員: 朱旭建
none
鄭金典
none
學位類別: 碩士
Master
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 120
中文關鍵詞: 尋路提示音系統音調駕車經驗互動設計
外文關鍵詞: Wayfinding, Auditory signal, Pitch, Driving experience, Interaction design
相關次數: 點閱:297下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當面對陌生環境,尋路是我們日常生活不斷會碰到且執行的心智歷程。隨著日益發達之科技進展,導航科技的進步,人們能透過更多元的方式獲得路徑導引資訊。本研究目的在於如何藉由提示音音調高低變化之組合搭配提示方向性,提升使用者尋路之績效。本研究共包含兩階段實驗分別為:(1)前導性實驗:透過文獻探討收集提示音之音調變化所對應之意涵,並透過實驗方式,針對提示音音調高低對應方向之可能性,進行初探。以操作計測、系統使用性尺度量表和訪談,瞭解提示音對應方向之關聯性。(2)驗證性實驗:依據文獻及前導性實驗之結果,製作駕車模擬環境,並於模擬環境中進行模擬駕車導航之實驗。
    驗證實驗採用2(駕車經驗有無)x 3(提示音音調變化)雙因子混合設計之方式進行。「駕車經驗有無」採取兩層級:(1)具駕車經驗:具有駕駛汽車於道路環境之受測者;(2)無駕車經驗:完全沒有駕駛汽車經驗之受測者。而「提示音音調變化」分為三層級:(1)提示音單音音調變化:「轉彎」意象利用不同音調高低之兩單音組成,「前進迴轉」意象利用連續同音調之兩單音組成。(2)提示音單音音調無變化:利用無音調變化之兩單音,透過不同音長組成提示音。(3)提示音重複單音音調變化:「轉彎」意象利用連續同音調之兩單音組成,「前進迴轉」利用不同音調高低之兩單音組成。
    研究結果:(1)「提示音單音音調變化」之提示音介面,能較快速正確將提示音對應到預期方向;(2)「提示音單音音調變化」在判斷左轉和右轉時,具有音調高低的提示音,能在第一響音即能判斷左轉或右轉之預期方向,能幫助提升錯誤次數及效率;(3)「提示音單音音調無變化」辨別聲音長度對應方向,對於心智負荷呈現較高的狀態;(4)有音調變化之提示音設計,能降低受測者於辨別方向時,判斷過程之心智負荷程度;(5)「駕車經驗有無」於提示音對應方向之實驗中不影響整體操作績效。


    Wayfinding is a human mental cognitive process that he/she will use in his/her daily life, especially when facing a whole new environment. Along with the progress of the technology and GPS, a human can obtain various types of information around him/her. This study is aimed to find out the effects of combining sounds with different pitches for guiding directions. The experiment in this study includes two stages: (1) The pilot test: From integrating relevant research studies, the author will investigate different kinds of auditory signal combinations linking with specific meanings. An experiment was conducted to help understand potential combination of sounds that could help guide the direction. Based on user’s task performance, SUS questionnaire, and interview, the author can understand users’ mental models and cognition. (2) The validate experiment: Based on the results generated from the first stage together with summaries from relevant literature, a virtual driving simulation environment is built for the validate experiment.
    The experiment was planned based on a 2 (levels of user driving experience) by 3 (auditory signals with different pitch combinations) two-way ANOVA design. There are two levels in the independent variable of user experience: (a) The user who has driving experience: The user who had experience on driving a car. (b) The user who does not have driving experience: The user who had not driven a car ever. There are three levels in the independent variable of sound combination styles: (a) “Auditory signals combined with two levels of pitch”: Two sounds with different levels of pitches to present “Turning”, same pitch to present “Forward and U-turn”. (b) “Auditory signals with same pitch”: Sounds with different length to indicate different directions. (c) “Auditory signals repeated with same sounds by two levels of pitches”: Two sounds with same pitch to present “Turning”, different levels of pitches to present “Forward and U-turn”.
    The generated results indicated that: (1) “Auditory signals combined with two levels of pitches” sound style of user interface helps users know the direction correctly and faster. (2) When the user decided to turn right or turn left, the “auditory signals combined with two levels of pitches” style could help user realize the direction in advance. (3) By using different lengths of sound for distinguishing different directions, the user felt higher mental demand in “auditory signals with same pitch” style sound of user interface. (4) By applying different levels of pitches in auditory signal designs could help reduce the mental demand. (5) “The experiences of driving a car does not affect the performance of linking sound to specific direction.

    中文摘要.....................................................................................................................................i 英文摘要………………………………………………………………....………………...ii 致謝…………………………....................………………………………………………..iii 目錄.........................................................................................………….............................iv 圖目錄................................................................................................................................ vii 表目錄................................................................................................................................. xi 第一章 緒論......................................................................................................................... 1 1.1 研究背景與動機.................................................................................................. 1 1.2 研究目的.............................................................................................................. 2 1.3 研究架構與流程.................................................................................................. 3 1.4 研究範圍與限制.................................................................................................. 5 第二章 文獻探討................................................................................................................. 6 2.1 尋路...................................................................................................................... 6 2.1.1 尋路行為定義............................................................................................ 6 2.1.2 尋路行為之過程........................................................................................ 9 2.1.3 都市實質型態之元素............................................................................... 11 2.1.4 尋路之研究方法....................................................................................... 11 2.1.5 影響尋路績效的因素............................................................................... 13 2.1.6 導航輔助發展現況................................................................................... 14 2.2 認知與空間..........................................................................................................16 2.2.1 認知過程….............................................................................................. 16 2.2.2 空間認知….............................................................................................. 17 2.2.3 空間知識與其建立策略........................................................................... 17 2.3 提示音系統..........................................................................................................18 2.3.1 提示音之聲音種類…............................................................................... 18 2.3.2 提示音之功能分類…............................................................................... 20 2.3.3 提示音之設計要點…............................................................................... 21 第三章 研究方法與進行步驟............................................................................................23 3.1 研究進行步驟......................................................................................................23 3.2 實驗流程與建構..................................................................................................24 3.3 實驗方法…..........................................................................................................25 第四章 前導性實驗與研究成果.........................................................................................26 4.1 前導性實驗方式.................................................................................................. 26 4.2 前導性實驗對象….............................................................................................. 29 4.3 前導性實驗結果與分析….................................................................................. 31 4.3 綜合討論與分析….............................................................................................. 35 第五章 驗證實驗-駕車環境模擬測試.................................................................................37 5.1 驗證實驗方法........................................................................................................37 5.1.1 驗證實驗研究變項…..................................................................................37 5.1.2 驗證實驗駕車模擬環境製作.......................................................................43 5.1.3 驗證實驗設計...............................................................................................47 5.1.4 驗證實驗對象...............................................................................................50 5.2 驗證實驗之結果.....................................................................................................50 5.2.1 計測路徑任務操作績效分析........................................................................50 5.2.1.1 路徑一(四個決策點).........................................................................50 5.2.1.2 路徑二(八個決策點).........................................................................54 5.2.1.3 路徑三(十二個決策點).....................................................................59 5.2.1.4 整體操作績效...................................................................................64 5.2.2 NASA TLX 量表分析...................................................................................68 5.2.2.1 提示音之心智負荷...........................................................................69 5.2.2.2 提示音之時間負荷...........................................................................69 5.2.2.3 提示音之生理負荷...........................................................................71 5.2.2.4 提示音之精神負荷...........................................................................76 5.2.2.5 提示音之績效與滿意度...................................................................78 5.2.2.5 提示音之挫折程度……...................................................................80 5.2.3 SUS系統使用性尺度量表分析..................................................................82 第六章 結論與建議................................................................................................................85 6.1 研究結果..................................................................................................................85 6.1.1 提示音音調高低對應方向之研究結果........................................................85 6.2 結論與建議..............................................................................................................92 6.3 後續研究建議..........................................................................................................95 參考文獻...................................................................................................................................96 附錄一、前導性實驗問卷......................................................................................................102 附錄二、驗證性實驗問卷......................................................................................................105

    1. 山岡俊樹(1998)。使用者介面設計原則之研究。1998中日教育設計研討會論文集,77-80。
    2. 危正芬(譯)(1993)。環境心理學(原作者:T. McAndrew Francis)。台北市:五南圖書。(原著出版年:1993)
    3. 李佩衿(2004)。尋路地圖表現形式的使用性研究(未出版之碩士論文)。國立雲林科技大學,雲林縣。
    4. 吳玲玲(譯)(1998)。認知心理學(原作者:Solso, R. L.)。台北市:華泰書局。(原著出版年:1995)
    5. 宋伯欽(譯)(1975)。都市意象(原作者:K. Lynch)。台北市:臺隆書店(原著出版年:1960)
    6. 李素卿(譯)(2003)。認知心理學(原作者:M. W. Eysenck & M. T. Keane)。台北市:五南圖書。(原著出版年:2000)
    7. 林信全(2006)。空間能力與空間認知對三維空間搜尋系統的影響(未出版之碩士論文)。國立交通大學,新竹市。
    8. 細谷多聞(1995)。Auditory Sounds and Product User Interface,日本デザイソ學会誌,3(2),53-58。
    9. 陳佳欣(2004)。虛擬環境中跟隨鏡頭與尋路績效關係研究(未出版之碩士論文)。國立台灣藝術大學,新北市。
    10. 陳格理(1999)。圖書館尋路工作之理念與設計。中國圖書館學會會報,62,119-134。
    11. 陳建雄(譯) (2009)。互動設計。(原作者:J. Preece, Y. Rogers & H. Sharp)。台北縣:全華圖書。(原著出版年:2002)
    12. 陳俊文、游萬來和邱上嘉(2003)。探路研究的方法及應用。設計研究,07,222-234。
    13. 張晃銘(2007)。虛擬環境中使用者空間知識與尋路策略的探討-以地理標籤與聽覺符號為例(未出版之碩士論文)。國立台灣科技大學,台北市。
    14. 張文德(2008)。尋路導航輔助設計之比較與應用(未出版之博士論文)。國立台灣科技大學,台北市。
    15. 張天鳳(2006)。3D虛擬環境中地標輔助與尋路策略傾向對空間知識之影響(未出版之碩士論文)。國立交通大學,新竹市。
    16. 歐陽鍾玲(1981)。心智圖在地理學上的運用,地理教育,第8期,63-70。
    17. Allen, G. L., (1999). Spacial ability, cognitive map, and wayfinding: Bases for individual differences in spatial cognition and behavior. In R. G. Golledge (Ed.), Wayfinding behavior: Cognitive mapping and other spatial processes (pp. 46-80): Baltimore: John Hopkins University Press.
    18. Arthur, P., & Passini, R. (1992). Wayfinding, People, Sign and Architecture. Cambridge, MA: McGraw-Hill.
    19. Best, G. (1970). Direction-finding in large building. In Canter D., (Eds.), Architectural Psychology,72-91. San Luis, CA: RIBA Publication.
    20. Bethell-Fox, C. E., & Shepard, N. E. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology: Human Perception and Performance, 14, 12-23.
    21. Bosco, A., Longoni, A. M., & Vecchi, T. (2004). Gender effects in spatial orientation: Cognitive profiles and mental strategies. Applied Cognititve Psychology, 18, 519-532.
    22. Brown, L. N., Lahar, C. J., & Mosley, J. L. (1998). Age and gender related differences in strategy use for route information- A map present direction giving paradigm. Environment and Behaviors, 30(2), 123-143.
    23. Chen, J. L., & Stanney, K. M. (1999). A theoretical model of wayfinding in virtual environments: Proposed strategies for navigational aiding. Presence, 8(6), 671-685.
    24. Conroy, R. A. (2001). Wayfinding in the real and virtual world. In spatial navigation in immersive virtual environments. Department of Architecture. (pp. 23-48). London, England: University Colledge London.
    25. Darken, R. P., & Banker, W. P. (1998). Navigating in natural environments: A virtual environments training transfer study. Proceedings of virtual reality annual international sympoaium, 12-19.
    26. Dabbs, J. M., Chang, E. L., & Strong, R. A. (1998). Spatial ability, navigation strategy and geographic knowledge among the male and the female. Evolution and Human Behavior, 19, 89-98.
    27. Darken, R. P., & Peterson, B. (2002). Spatial Orientation, wayfinding, and representation. In K.M. Stanney (Ed.), Handbook of virtual environments: Design, implementation and applications (pp. 493-519).
    28. Darken, R. P., & Sibert, J. L. (1996). Wayfinding strategies and behaviors in large virtual worlds. Proceedings of ACM CHI 96, 142-149.
    29. Devlin, A. S., & Bernstein, J. (1995). Interactive wayfinding: Use of cues by men and women. Journal of Environmental Psychology 15, 23–38.
    30. Downs, R. (1979). Mazes, mind and maps. New Providence, NJ: R.R.Bowker.
    31. Downs, R. & Stea, D. (1973). Image and environment: cognitive mapping and spatial behavior. Chicago, IL: Aldine.
    32. Eaton, G. (1992). Wayfinding in a library: Book searches and route uncertainty. RQ, 30(4), 523-525.
    33. Galea, L. A. M., & Kimura, D. (1993). Sex differences in route learning. Personality and Individual Differences, 14(1), 53-65.
    34. Gluck, M. (1990). Making sense of human wayfinding: A review of cognitive and linguistic knowledge for personal navigation with a new research direction. Myke Gluck School of Information Studies, New York, NY: Syracuse University.
    35. Green, P., Levison, W., Paelke, G., & Serafin, C. (1995). Preliminary human factors design guidelines for driver information systems (Tech. Rep. No. FHWA-RD-94-087). Washington, DC: U.S. Government Printing Office.
    36. Ingwerron, P. (1982). Research procedures in the library: Analyzed from the cognitive point of view. Journal of Documentation, 38 (3), 165-191.
    37. Jul, S., & Furnas, G. W. (1997). Navigation in Electronic Worlds: A CHI 97 Workshop. SIGCHI Bulletin, 29(4).
    38. Kato, Y., & Takeuchi, Y. (2003). Individual differences in wayfinding strategies. Journal of Environmental Psychology, 23(2), 171-188.
    39. Kramer, G. (1994). An introduction to auditory display. In G. Kramer (Ed.). Auditory display: Sonification, audMA: Addison Wesley.
    40. Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30, 765-779.
    41. Lawton, C. A. (1996). Strategies for indoor way-finding: the role of orientation. Journal of Environmental Psychology, 16, 137-145.
    42. Lawton, C. A., Charleston, S. I., & Zieles, A. S. (1996). Individual and gender-related differences in indoor wayfinding. Environment and Behavior, 28, 204-219.
    43. Lawton, C. A., & Morrin, K. A. (1999). Gender differences in pointing accuracy in computer simulated 3D mazes. Sex Roles 40 (1/2), 73–92.
    44. Miller, L. K., & Santoni, V. (1986). Sex differences in spatial abilities: strategic and experimental correlates. Acta Psychologica, 62, 225-235.
    45. Montello, D. R. (1991). Spatial orientation and the angularity of urban routes a field study. Environment and behavior, 23(1), 47-69.
    46. Montello, D. R. (2002). Cognitive map-design research in the twentieth century: Theoretical and empirical approaches. Cartography and Geographic Information Science, 29, 283-304.
    47. Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a virtual maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73–87.
    48. Montello, D. R., Lovelace, K. L., Golledge, R. G., Self, C. M. (1999). Annals of the association of American geographers sex-related differences and similarities in geographic and environmental. Spatial Abilities, 89(3), 515-534.
    49. Norman, D. (1993). Things that make us smart: Defending human attributes in the age of the machine. Boston, MA: Addison-Wesley.
    50. Oglesby, C. H. (1974). Highway Engineering (3rd Ed.) New York, NY: Wiley.
    51. O’Laughlin, E. M., & Brubaker, B. S. (1998). Use of landmarks in cognitive mapping: Gender differences in self report versus performance. Personality and Individual Differences, 24(5), 595-601.
    52. O'Neill, M. J. (1991). Effects of signage and floor plan configuration on wayfinding accuracy. Environment and Behavior, 23(5), 553-574.
    53. Passini, R. (1992). Wayfinding in architecture, New York, NY: Van Nostrand Reinhold.
    54. Peponis, J., Zimring, C., & Choi, Y. K. (1990). Finding the building in wayfinding. Environment and Behavior, 22(5), 555-590.
    55. Raubal, M. & Egenhofer, M. J. (1998). Comparing the complexity of wayfinding tasks in built environments. In Environment and Planning B, 25(6), 895-913.
    56. Satalich, G. A. (1995). Navigation and wayfinding in virtual reality: Finding proper tools and cues to enhance navigation awareness. (Unpublished master thesis). Washington University, St. Louis.
    57. Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6, 351–360.
    58. Sadeghian, P., Kantardzic, M., Lozitskiy, O., & Sheta, W. (2006). The frequent wayfinding-sequence fws; methodology: Finding preferred routes in completing. International Journal of Human-Computer Studies, 64(4), 356-374.
    59. Schmitz, S. (1997). Gender related strategies in environmental development: Effect of anxiety on wayfinding in and representation of a three-dimensional maze. Journal of Environmental Psychology, 17, 215-228.
    60. Schiff, W., & Oldak, R. (1990). Accuracy of judging time to arrival: Effects of modality, trajectory, and Gender. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 303-316.
    61. Shemyakin, F. N. (1962). General problems of orientation in space and space representations. In B.G. Ananyev (Ed.), Psychological science in the USSR. Arlington, VA: U.S. Office of Technical Reports.
    62. Shin-ichiro I. (2012). Science of sound sign - Design theory of sound conveying message. Tokyo, Japan: Corona.
    63. Shin-ichiro I., Aiko F.,& Manabu T. (2007). The functional imagery and sound quality of auditory signals. Proceeding of 19th International Congress on Acoustics,11(1), 3533-3537.
    64. Siegel, A.W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H.W. Reese, (Ed.), 1975 Advances in child development and behavior, 10, 37-55. New York, NY: Academic Press.
    65. Smith, G. A., & McPhee, K. A. (1987).Performance on a coincidence timing task correlates with intelligence. Intelligence,11(2), 161-167.
    66. Wake, S. H. (2005). SUI (Sound User Interface): Auditory information display used design sound and its design.Fujisawa interface design 2005, 105-110.
    67. Ward, S. L., Newcombe, N., & Overton, W. F. (1986). Turn left at the church, or three miles north: A study of direction giving and sex differences. Environment and Behavior, 18(2), 192-213.

    QR CODE