簡易檢索 / 詳目顯示

研究生: 易優比
Yopie - Yutama Surbakti
論文名稱: 車內提示音之人體工學評估
Ergonomic Evaluation of Interior Car Sound
指導教授: 紀佳芬
Chia-Fen Chi
口試委員: 林希偉
Shi-Woei Lin
林承哲
Cheng-Jhe Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 82
中文關鍵詞: 聽覺信號成對比較法語意差易法結構方程模型(SEM)
外文關鍵詞: auditory signals, paired comparison, semantic differential rating, structural equation modeling (SEM)
相關次數: 點閱:270下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聲音的品質對於評價一輛汽車的好壞是個相當重要的因素。先前的研究中收集11種汽車品牌(黃,2014)的五種提示音(方向燈、車門未關警示、喇叭、倒車雷達、R檔音),並經過後製處理,篩選掉同質性高的聲音。在實驗中,21位有開車經驗的受試者(14位男性與7位與性),其年紀介於29~57歲。每位受試者被要求以成對比較法與語意差異法評估上述每一種提示音,由於在成對較法中(黃,2014),有四位受試者的結果有顯著的循環錯誤,因此不採以分析,在語意差異法中,以聲音五種不同的特性:音質、響度、頻率、音色與節奏發展出11組形容詞來進行語意差異法。本研究中所分析的物理性質有音高、頻率和聲音的最大強度等數種物理性質,以用來解釋為何某些提示音比較好。
    結構方程模型用來測試受試者的享受、愉悅、合適度、舒適度、噪音、銳利度、豐富度、音速與清晰度等物理性質。結果指出,語意差異法(semantic differential method)其不舒適的-舒適的、不合適的-合適的、廉價的-高貴的以及煩躁的-愉悅的,對於音質方面佔有較大的比重。單純的-豐富的、冷漠的-溫暖的語意差異法對於音色有顯著的指標,同時相當安靜的-吵雜的、柔弱的-有力的,對響度方面也有佔有較大的比重。音色與聲音的品質是正相關,同時響度與聲音品質是負相關。間歇性的聲音信號其音色、響度和節拍對於評估聲音品質具有顯著的相關性。對於連續的聲音信號,其音調、音色和響度也有顯著的相關。總體而言,響亮的聲音(噪音,有力的、節奏快的)被認為具有較低音質,同時溫暖和豐富的聲音被認為有較好的音質。結果指出,本研究所提出的音質模型可用於描述主觀偏好之間關係和車內聲音物理性質,對於評估與再設計車內的提示音非常有幫助


    Acoustic quality is one of the important factor to support the positive image of an automobile. The previous study collected and edited sound signals of five functions (indicator, door warning, horn, parking sensor, and reverse gear shift) from 11 car brand names (Huang, 2014). In that experiment, twenty-one experienced drivers (14 males and 7 females) aged between 29 and 57 took part in this experiment. Each participant was required to evaluate acoustic quality of all the above sound signals by a pair comparison test and a semantic differential rating scale test. Four participants were excluded from further analysis because of their significant circular errors from the pair comparison test (Huang, 2014). The semantic rating scale test used 11 pairs of adjectives developed from five major attributes of sound including quality, loudness, frequency, timbre, and tempo. This current study used physical properties, e.g., number of pitch, dominant frequency, and maximum intensity of all sound signals in order to were also collected and analyzed in order to explain why certain sound signal were preferred over the others. Structural equation model was applied to examine relationship among semantic rating scales of luxury, pleasure, suitability, desirability, noise, power, sharpness, richness, warmth, fast and clearness with physical properties. The results indicated that semantic ratings of undesirable-desirable, unsuitable-suitable, cheap-luxurious, annoying-pleasant had relatively high loadings on sound quality dimension. The semantic ratings of pure-rich and cold-warm were significant indicators for timbre while quite-noisy and weak-powerful had significant loadings on loudness. Timbre was positive related to sound quality while loudness was negatively related to sound quality. For intermittent sound signals, timbre, loudness, and tempo have significant correlation with sound quality evaluation. For continuous sound signals, pitch, timbre, and loudness also have significant effects of sound quality. Overall, louder sounds (noisy, powerful, or fast tempo) were perceived to have lower quality while warm and rich sounds were perceived to have better quality. The results suggest that the proposed acoustic quality model can be used to describe relationship between subjective preference and sound physical of interior car sound, which is very helpful for the evaluation and redesign of sound signal in vehicles.

    CONTENTS Cover i 摘要 ii ABSTRACT iii ACKNOWLEDGEMENTS iv CONTENTS v LISTS OF TABLES viii LISTS OF FIGURES ix CHAPTER 1 INTRODUCTION 1 1.1 Research background 2 1.2 Research objective 3 1.3 Research scope and constraints 3 1.4 Research framework 3 CHAPTER 2 LITERATURE REVIEW 5 2.1 Sound 5 2.2 Attribute of Sound 5 2.2.1 Frequency 5 2.2.2 Intensity of Sound 7 2.2.2.1 ‘A’ Weighting 7 2.2.2.2 ‘C’ Weighting 8 2.2.2.3 ‘Z’ weighting 8 2.3 Psychoacoustics 9 2.3.1 Method of Psychoacoustics 10 2.3.1.1 The Ranking Procedure 10 2.3.1.2 The Semantic Differential Rating Scale 11 2.3.1.3 Category Scaling 11 2.3.1.4 Magnitude Estimation 12 2.4 Acoustical Parameter in Sound Quality 13 2.4.1 Pitch 13 2.4.2 Loudness 14 2.4.3 Tempo 14 2.4.4 Timbre 15 2.5 Structural Equation Modeling 15 CHAPTER 3 METHODOLOGY 18 3.1 Participant and Experiment Apparatus 18 3.2 Sound collection 19 3.3 Semantic Differential Scale 20 3.3.1 Sound Quality (Evaluation of Sound) 21 3.3.2 Pitch 21 3.3.3 Timbre 21 3.3.4 Loudness 22 3.3.5 Rhythm (Tempo) 22 3.4 Structural Equation Modeling 23 CHAPTER 4 RESULTS AND DISCUSSION 24 4.1 Pairwise Comparison Results 24 4.2 Physical Properties of Sound 25 4.2.1 Horn 29 4.2.2 Parking Sensor 32 4.2.3 Door Warning 35 4.2.4 Reverse Gear Shift 39 4.2.5 Indicator 42 4.3 Semantic Differential Rating 46 4.4 Structural Equation Modeling 52 4.4.1 Structural Equation Model for Sound Quality in Intermittent Sound 54 4.4.2 Structural Equation Model for Sound Quality in Continuous Sound 60 4.5 Discussion 62 CHAPTER 5 CONCLUSIONS 65 5.1 Conclusions 65 5.2 Contributions 65 5.3 Future Research 66 REFERENCES 67

    1. ANSI (1994) ANSI S1.1-1994. American National Standard Acoustical Terminology. New York: American National Standards Institute.
    2. ANSI (1973). American national psychoacoustical terminology.S3.20. New York: American National Standards Institute.
    3. ANSI (1960). USA standard acoustical terminology (including mechanical shock and vibration) New York: American National Standard Institute.
    4. Beranek, L. L., & Vér, I. L. (1992). Noise and vibration control engineering: John Wiley & Sons New York.
    5. Bismarck, G.V. (1974) Timbre of steady sounds: a factorial investigation of its verbal attributes. Acustia, vol.30, pp 146-159.
    6. Blauert, J., & Jekosch, U. (1997). Sound-quality evaluation–a multi-layered problem. Acta acustica united with acustica, 83(5), 747-753.
    7. Bodden M. (1997) Instrumentation for sound quality evaluation. Acustica, vol 83, pp. 775–783.
    8. Bregman, A.S. (1990) auditory scene analysis: The perceptual organization of sound. Cambridge, Mass.
    9. Brüel & Kjær. (2014) Sound, Vibration, Education – Audiology and Psychoacoustics, http://www.bksv.com/doc/sve/7.%20Audiology%20(0210).pdf, accessed December 23, 2014
    10. Caclin, A., Giard, M. H., Smith, B. K., & McAdams, S. (2007). Interactive processing of timbre dimensions: A Garner interference study. Brain research, 1138, 159-170.
    11. Chi, C.-F., Shih, Y.-C., & Chen, W.-L. (2012). Effect of cold immersion on grip force, EMG, and thermal discomfort. International Journal of Industrial Ergonomics, 42(1), 113-121.
    12. De Cheveigne, A. (2005). Pitch perception models. Pitch, Springer: 169-233.
    13. Duffy, V. G., Ng, P. P., & Ramakrishnan, A. (2004). Impact of a simulated accident in virtual training on decision-making performance. International Journal of Industrial Ergonomics, 34(4), 335-348.
    14. Edworthy, J., & Waring, H. (2006). The effects of music tempo and loudness level on treadmill exercise. Ergonomics, 49(15), 1597-1610.
    15. Fastl, H. (2005) Psycho-acoustics and sound quality. Communication acoustic pp.139-162.
    16. Fastl, H., Zwicker, E. (2006) Psychoacoustics: Facts and Models 3rd edition. Heidelberg: Springer.
    17. Gelfand, S.A. (1990) Hearing: An Introduction to Psychological and Physiological Acoustics. New York: Marcel Dekker, Inc.
    18. Genuit, K. (1996) Objective evaluation of acoustic-quality based on a relative approach. Inter-Noise’96, 30.07-02.08, Liverpool, England.
    19. Genuit, K. (2004) The sound quality of vehicle interior noise: a challenge for the NVH-engineers. International Journal of Vehicle Noise and Vibration, vol.1, Nos. 1/2.
    20. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis: A Global Perspective. 7th ed. Upper Saddle River, NJ: Pearson Prentice Hall.
    21. Handel, S. (1995) Timbre Perception and Auditory Object Identification. In B.C.J. Moore (Ed.). Hearing: Handbook of Perception and Cognition, 2nd edition, (pp. 425-461). San Diego, London: Academic Press.
    22. Houtsma, A. J. (1995). Pitch perception. In B.C.J. Moore (Ed.). Hearing: Handbook of Perception and Cognition, 2nd edition, (pp. 267-295). San Diego, London: Academic Press.
    23. Howard, D.M., Angus J.A.S. (2009) Acoustics and Psychoacoustics 4th edition. Oxford: Focal Press.
    24. Huang, M. H. (2014). Subjective Preference Evaluation on the Interior Car Sound. National Taiwan University of Science and Technology.
    25. Huang, Y., Di, G., Zhu, Y., Hong, Y., & Zhang, B. (2008). Pair-wise comparison experiment on subjective annoyance rating of noise samples with different frequency spectrums but same A-weighted level. Applied Acoustics, 69(12), 1205-1211.
    26. Jekosch U. Sound Quality Assessment in the Context of Product Engineering, Proc. EuroNoise’01, GR-Patra (2001).
    27. Jennings, P., et al. (2010). "Tools and techniques for understanding the fundamentals of automotive sound quality." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 224(10): 1263-1278.
    28. Jindo, T., Hirasago, K. (1997) Application studies to car interior of Kansei Engineering. International Journal of Industrial Ergonomics, vol. 19, pp. 105 – 114.
    29. Jones, M.R., Fay, R.R., Popper, A.N. (2010) Music Perception. New York: Springer.
    30. Kraus, N., Skoe, E., Parbery‐Clark, A., & Ashley, R. (2009). Experience‐induced malleability in neural encoding of pitch, timbre, and timing. Annals of the New York Academy of Sciences, 1169(1), 543-557.
    31. Küssner, M. B., Tidhar, D., Prior, H. M., & Leech-Wilkinson, D. (2014). Musicians are more consistent: Gestural cross-modal mappings of pitch, loudness and tempo in real-time. Frontiers in psychology, 5.
    32. Kuwano, S., Fastl, H., Namba, S., Nakamura, S., Uchida, H. (2002) Subjective evaluation of car door sound. Proceedings of the Sound Quality Symposium SQS; 2002.
    33. Lakovides, S.A., Iliadou, V.TH., Bizeli, V.TH., Kaprinis, S.G., Fountoulakis, K.N., Kaprinis, G.S. (2004) Psychophysiology and psychoacoustics of music: Perception of complex sound in normal subjects and psychiatric patients. Annals of General Hospital Psychiatry 2004, 3:6.
    34. Mao, D., Yu, W., Gao, Y., & Wang, Z. (2004). Error rating of paired comparison listening test for sound quality assessment. In Proceeding of ICA 2004.
    35. Navon, D. (1977) Forest before trees. The presence of global features in visual perception. Cognitive Psychology, 9,353-383.
    36. Osgood, C.E., Suci, G.J., Tannenbaum, P.H.,(1957). The Measurement of Meaning. Illinois press,Urbana.
    37. Otto, N., Amman, S., Eaton, C., & Lake, S. (2001). Guidelines for jury evaluations of automotive sounds. Sound and Vibration, 35(4), 24-47.
    38. Otto, N., Amman, S., Eaton, C., and Lake, S., "Guidelines for Jury Evaluations of Automotive Sounds," SAE Technical Paper 1999-01-1822, 1999, doi: 10.4271/1999-01-1822.
    39. Parizet, E. (2002). Paired comparison listening tests and circular error rates.acta acustica united with acustica, 88(4), 594-598.
    40. Parizet E, Hamzaoui N, Sabatie G. Comparison of listening test experiments: a case study. Acta Acust United Acust 2005; 91:356-64.
    41. Parizet, E., Guyader, E., Nosulenko, V. (2008) Analysis of car door closing sound quality. Applied Acoustics vol.69, pp. 12-22.
    42. Plack, C.J. (2005) The Sense of Hearing. New Jersey: Lawrence Erlbaum Associates.
    43. Plack, C.K., Oxenham, A.J., Fay, R.R., Popper, A.N. (2005) Pitch: Neural Coding and Perception. New York: Springer.
    44. Pratt, R.L., Doak, P.E. (1976) A Subjective Rating Scale for Timbre. Journal of Sound and Vibration, vol 45 (3), pp. 317-328
    45. Pratt, R.L., Bowsher, M.J. (1978) The Subjective Assessment of Trombone Quality. Journal of Sound and Vibration, vol.53 (3), pp.425-435.
    46. Roederer, J. G. (2008). The physics and psychophysics of music: an introduction, Springer Science & Business Media.
    47. Sanders, M.S., McCormick, E.J. (1993) Human Factors in Engineering and Design 7th Edition. Singapore: McGraw-Hill.
    48. Schumacker, R. E., & Lomax, R. G. (2010). A beginner's guide to structural equation modeling. Taylor and Francis Group, LLC
    49. Sethares, W.A (1998) Tuning, Timbre, Spectrum, Scale. London;New York: Springer
    50. Sethares, W.A (2007) Rhythm and Transforms. Berlin: Springer
    51. Sodnik, J., Dicke, C., Tomazic, S., Billinghurst, M. (2008) A user study of auditory versus visual interfaces for use while driving. International journal of human-computer studies, vol.66, pp.318-332.
    52. Sundberg, J. and T. D. Rossing (1990). "The science of singing voice." the Journal of the Acoustical Society of America 87(1): 462-463.
    53. Västfjäll, D., et al. (2002). "Affective evaluations of and reactions to exterior and interior vehicle auditory quality." Journal of Sound and Vibration 255(3): 501-518.
    54. Wang, E.Y-n., Wang, E. M-y. (2012) In-car sound analysis and driving speed estimation using sounds with different frequencies as cues. International Journal of Industrial Ergonomics, vol.42, pp.34-40.
    55. Weber, R. (1999) Interior car sound quality – assessment of acceleration noises. 2nd Forum Acusticum, Berlin.
    56. Wickens, C. D., Lee, J., Liu, Y., & Becker, S. G. (2004) An introduction to human factors engineering.
    57. Wogalter, M. S., Kalsher, M. J., & Racicot, B. M. (1993) Behavioral compliance with warnings: Effects of voice, context, and location. Safety Science, vol.16, pp.113-120.
    58. Yamaguchi, K., Choi, J-D., Maiguma, R., Takada, M., Iwamiya, S. (2004) A Basic Study on Universal Design of Auditory Signals in Automobiles. Journal of Physiological Anthropology and Applied Human Science, vol. 23, pp. 295-298.
    59. Yost, W. A. (2009). Pitch perception. Attention, Perception, & Psychophysics, 71(8), 1701-1715.
    60. Zwicker, E., Fastl, H. Psychoacoustics: Facts and Models (Springer, D-Heidelberg, 1999)
    61. Zwicker, E., & Terhardt, E. (1980). Analytical expressions for critical‐band rate and critical bandwidth as a function of frequency. the Journal of the Acoustical Society of America, 68(5), 1523-1525.

    QR CODE