簡易檢索 / 詳目顯示

研究生: 陳夢兮
Meng-Xi Chen
論文名稱: 虛擬環境中俯瞰地圖之視覺設計研究
Visual Design of Overview Maps in Virtual Environments
指導教授: 陳建雄
Chien-Hsiung Chen
口試委員: 吳志富
Chih-Fu Wu
衛萬里
Wan-Li Wei
林廷宜
Ting-Yi Lin
柯志祥
Chih-Hsiang Ko
陳建雄
Chien-Hsiung Chen
學位類別: 博士
Doctor
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 119
中文關鍵詞: 虛擬環境俯瞰地圖介面設計尋路地圖設計
外文關鍵詞: Virtual environment, Overview map, Interface design, Wayfinding, Map design
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人們於陌生虛擬環境 (virtual environment, VE) 中需要藉由尋路 (wayfinding) 輔助工具提升使用體驗。如何設計尋路輔助是虛擬環境開發的重要議題。本研究主要目的為探討虛擬環境中俯瞰地圖 (overview map) 的視覺設計對使用者的影響。透過探討虛擬環境、尋路輔助、地圖設計等相關研究理論及方法之相關文獻,建構虛擬環境中地圖輔助尋路之互動與設計模式。研究設計三個實驗,變數包括虛擬環境中俯瞰地圖的視覺設計與使用者性別,量化探究使用者的尋路績效與主觀評量。
    實驗一為3 (俯瞰地圖背景透明度) x 2 (性別) 組間實驗設計,結果發現:(1) 透明度為50%和100%的俯瞰地圖完成簡單的尋路任務所需時間顯著短於透明度為0的俯瞰地圖;(2) 使用者認為透明度為50%的俯瞰地圖合理性顯著優於透明度為100%的俯瞰地圖;(3) 女性對透明度為50%的俯瞰地圖使用性評價顯著高於透明度為0的俯瞰地圖;(4) 在較難的尋路任務中,男性的任務完成時間顯著短於女性;(5) 女性對透明度50%的俯瞰地圖偏好、使用性以及介面整體反應的滿意度評價均顯著優於男性。
    實驗二為4 (地標形式) x 2 (性別) 組間實驗設計,結果發現:(1) 簡單尋路任務中,有文字的地標尋路績效顯著高於沒有文字的地標;(2) 比較感知資訊的較難任務中,符號與文字地標的尋路績效顯著低於其他形式;(3) 結合感知資訊與抽象資訊的較難任務中,符號地標的尋路績效顯著低於其他形式;(4) 在地標中使用文字顯著提高俯瞰地圖合理性、使用性、學習介面滿意度與感知有用性的評價。(5) 女性對具有地標的俯瞰地圖偏好、使用性、介面呈現滿意度以及使用意願的評價均顯著優於男性。
    實驗三為3 (俯瞰地圖尺寸) x 2 (背景透明度) 組間實驗設計,結果發現:(1) 在尺寸為1/8介面中,透明度為20%的俯瞰地圖尋路所需時間顯著短於透明度為80%的俯瞰地圖;(2) 對於尺寸為1/2介面的俯瞰地圖,使用者對透明度為80%的偏好顯著高於透明度為20%;(3) 使用者對尺寸為1/16介面的俯瞰地圖偏好顯著高於尺寸為1/2介面的俯瞰地圖;(4) 使用者對尺寸為1/8介面的俯瞰地圖滿意度、偏好與使用性評價均顯著高於尺寸為1/2介面的俯瞰地圖;(5) 在透明度為20%中,尺寸為1/8介面的俯瞰地圖尋路所需時間顯著短於尺寸為1/2介面的俯瞰地圖。
    根據觀察與分析討論的結果,本研究建議在未來的虛擬環境設計中採用半透明背景的俯瞰地圖。根據不同的任務特性選擇績效最佳的俯瞰地圖尺寸與地標形式。適當提升俯瞰地圖背景的透明度,縮小俯瞰地圖的尺寸,避免採用相同符號的地標設計,在地標中加入文字,均可提升使用者的主觀評價。此外,應注重提升男性使用者的主觀感受與女性在較難尋路任務中的績效。


    Wayfinding aids help enhance user experience in an unfamiliar virtual environment (VE). Wayfinding aid design is an important issue in the development of VEs. This study aims to investigate the effects of the visual design of overview maps on wayfinding in a VE. Studies related to VE, wayfinding aid and map design were discussed to build an interaction and design model of wayfinding maps in VEs. This study was consisted of three experiments. The research variables are overview map design and gender. The dependent variables were wayfinding performance and subjective evaluations.
    The first experiment is a 3 (the transparency of background) x 2 (gender) between-subjects factorial design. The results indicated that: 1. User performance of the 50% and 100% transparent overview maps were significantly better than the 0% transparent overview map in an easy wayfinding task; 2. The 50% transparent overview map was of significantly higher subjective rationality than the 100% transparent overview map; 3. Females gave the 50% transparent overview map significantly higher SUS scores than the 0% transparent overview map; 4. Males took significantly less time than females to complete the more difficult wayfinding task; 5. Females with the 50% transparent overview map showed significantly higher subjective preference, SUS scores and satisfaction with overall reaction than males.
    The second experiment is a 4 (the forms of landmark) x 2 (gender) between-subjects factorial design. The results indicated that: 1. Landmarks with text were significantly more efficient than those without text in a easy wayfinding task; 2. For a more difficult task of comparing perceptual information, landmarks with symbols and text were significantly more inefficient than others; 3. For a more difficult task combining perceptual information with abstract information, landmarks with symbols were significantly more inefficient than others; 4. The use of text in landmark design can significantly improve subjective rationality, system usability, satisfaction with learning and perceived usefulness of overview maps; 5. Females showed significantly higher subjective preference, SUS scores, satisfaction with screen and intentions of using overview maps with landmarks than males.
    The third experiment is a 3 (size) x 2 (the transparency of background) between-subjects factorial design. The results indicated that: 1. The 20% transparent overview map is significantly more efficient than the 80% transparent overview map in the condition of 1/8 screen size; 2. At 1/2 screen size, users with the 80% transparent overview map showed significantly higher preference than those with the 20% transparent overview map; 3. Users with the overview maps in the condition of 1/16 screen size showed significantly higher subjective preference than those with the overview maps in the condition of 1/2 screen size; 4. Users with the overview maps in the condition of 1/8 screen size showed significantly higher subjective satisfaction, preference and SUS scores than those with the overview maps in the condition of 1/2 screen size; 5. For the 20% transparent overview map, users with the overview maps in the condition of 1/8 screen size showed significantly higher efficiency than those with the overview map in the condition of 1/2 screen size.
    Based on the results from this study, we recommend that designers use semi-transparent overview maps in onscreen VEs. The optimum size of overview maps and landmark forms can be chose according to the characteristics of tasks. Enhancing the transparency of background, reducing the size of overview maps and avoiding landmarks with the same symbols can improve users’ subjective evaluations. In addition, VE designers may focus on improving females’ wayfinding performance and males’ subjective experience.

    摘 要......................................................................................iii 誌 謝........................................................................................vi 目 錄.......................................................................................vii 表目錄.......................................................................................x 圖目錄.....................................................................................xii 第一章 緒論..............................................................................1 1.1 研究動機...............................................................................1 1.2 研究目的..............................................................................2 1.3 研究範圍與限制...................................................................2 1.3.1 研究範圍...........................................................................2 1.3.2 研究限制...........................................................................4 1.4 研究架構..............................................................................4 第二章 文獻探討.......................................................................6 2.1 虛擬環境..............................................................................6 2.2 尋路與空間認知...................................................................7 2.3 尋路性別差異......................................................................9 2.4 尋路輔助............................................................................10 2.5 地圖設計............................................................................13 2.5.1 俯瞰地圖背景透明度........................................................14 2.5.2 俯瞰地圖地標..................................................................15 2.5.3 俯瞰地圖尺寸..................................................................19 2.6 小結...................................................................................19 第三章 研究方法.....................................................................21 3.1 第一階段:俯瞰地圖背景透明度之視覺設計研究................22 3.1.1 實驗設計..........................................................................22 3.1.2 受測對象.........................................................................23 3.1.3 實驗材料和設備...............................................................24 3.1.4 實驗流程..........................................................................27 3.2 第二階段:俯瞰地圖地標形式之視覺設計研究....................29 3.2.1 實驗設計..........................................................................29 3.2.2 受測對象..........................................................................30 3.2.3 實驗材料和設備................................................................31 3.2.4 實驗流程..........................................................................34 3.3 第三階段:俯瞰地圖尺寸之視覺設計研究............................36 3.3.1 實驗設計...........................................................................36 3.3.2 受測對象...........................................................................37 3.3.3 實驗材料和設備................................................................38 3.3.4 實驗流程..........................................................................42 第四章 虛擬環境中俯瞰地圖背景透明度之視覺設計研究...........44 4.1 結果.....................................................................................44 4.1.1 任務完成時間分析..............................................................44 4.1.2 主觀合理性分析.................................................................47 4.1.3 主觀偏好分析....................................................................48 4.1.4 SUS分析...........................................................................50 4.1.5 QUIS分析..........................................................................52 4.1.5.1 介面整體反應之分析.......................................................54 4.1.5.2 介面呈現之分析..............................................................55 4.1.5.3 介面用詞和系統資訊之分析............................................56 4.1.5.4 介面學習之分析..............................................................56 4.1.5.5 介面性能之分析..............................................................57 4.2 討論.....................................................................................57 4.3 小結.....................................................................................59 第五章 虛擬環境中俯瞰地圖地標形式之視覺設計研究...............61 5.1 結果......................................................................................61 5.1.1 任務完成時間分析...............................................................61 5.1.2 主觀合理性分析..................................................................65 5.1.3 主觀偏好分析......................................................................65 5.1.4 SUS分析.............................................................................66 5.1.5 QUIS分析............................................................................67 5.1.5.1 介面整體反應之分析.........................................................68 5.1.5.2 介面呈現之分析................................................................69 5.1.5.3 介面學習之分析................................................................69 5.1.5.4 介面性能之分析................................................................69 5.1.6 TAM分析.............................................................................70 5.2 討論.......................................................................................71 5.3 小結.......................................................................................73 第六章 虛擬環境中俯瞰地圖尺寸之視覺設計研究........................76 6.1 結果.......................................................................................76 6.1.1 任務完成時間分析................................................................76 6.1.2 任務操作錯誤分析...............................................................82 6.1.3 主觀滿意度分析..................................................................84 6.1.4 主觀偏好分析......................................................................85 6.1.5 SUS分析.............................................................................87 6.2 討論......................................................................................88 6.3 小結......................................................................................90 第七章 結論與後續建議..............................................................92 7.1 結論.......................................................................................92 7.2 後續建議...............................................................................94 參考文獻.....................................................................................95 (附錄) 實驗問卷.........................................................................102

    參考文獻
    Andrienko, G. L., & Andrienko, N. V. (1999). Interactive maps for visual data exploration. International Journal of Geographical Information Science, 13(4), 355-374.
    Andújar, C., Chica, A., & Brunet, P. (2012). User-interface design for the Ripoll Monastery exhibition at the national art museum of Catalonia. Computers & Graphics, 36(1), 28-37.
    Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114-123.
    Baudisch, P., & Gutwin, C. (2004). Multiblending: Displaying overlapping windows simultaneously without the drawbacks of alpha blending. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 367-374.
    Bertin, J. (1983). Semiology of graphics: Diagrams, networks, maps. Madison, WI: The University of Wisconsin Press.
    Brooke, J. (1996). SUS: A quick and dirty usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester & A. L. McClelland (Eds.), Usability evaluation in industry (189-194). London, UK: Taylor and Francis.
    Burdea, G. C., & Coiffet, P. (2003). Virtual Reality Technology. Hoboken, NJ: John Wiley & Sons.
    Burigat, S., & Chittaro, L. (2007). Navigation in 3D virtual environments: Effects of user experience and location-pointing navigation aids. International Journal of Human-Computer Studies, 65(11), 945-958.
    Burigat, S., & Chittaro, L. (2013). On the effectiveness of Overview + Detail visualization on mobile devices. Personal and Ubiquitous Computing, 17(2), 371-385.
    Burigat, S., Chittaro, L., & Gabrielli, S. (2006). Visualizing locations of off-screen objects on mobile devices: A comparative evaluation of three approaches. Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI ’06), 239-246.
    Castelli, L., Corazzini, L. L., & Geminiani, G. C. (2008). Spatial navigation in large-scale virtual environments: Gender differences in survey tasks. Computers in Human Behaviour, 24, 1643-1667.
    Chen, C. H., Chang, W. C., & Chang, W. T. (2009). Gender differences in relation to wayfinding strategies, navigational support design, and wayfinding task difficulty. Journal of Environmental Psychology, 29(2), 220-226.
    Chen, C. H., & Chen, S. C. (2015). Effects of 2d wedge design as a wayfinding facilitator in a 3D virtual environment. Journal of the Society for Information Display, 23(1), 27-35.
    Chen, C. H., Chen, S. C., Huang, Y. C., Hsiao, W. H., & Lu, M. Y. (2012). Users' wayfinding behavior in a virtual environment of different screen sizes. Icic Express Letters, 6(12), 3001-3008.
    Chen, C. W., You, M. L., & Chiou, S. C. (2003, January). Psycho-pleasurability of maps for wayfinding. Paper presented at the 6th Asian Design International Conference, Tsukuba, Japan.
    Chen, J. L., & Stanney, K. M. (1999). A theoretical model of wayfinding in virtual environments: Proposed strategies for navigational aiding. Presence: Teleoperators and Virtual Environments, 8(6), 671-685.
    Chen, M. X., & Chen, C. H. (2019). User Experience and Map Design for Wayfinding in a Virtual Environment. In S. Yamamoto & H. Mori (Eds.), Human interface and the management of information: Information in intelligent systems (pp. 117-126). Cham, Switzerland: Springer.
    Chen, M. X., & Chen, C. H. (2020). A Study of Size Effects of Overview Interfaces on User Performance in Virtual Environments. In C. Stephanidis, J. Y. C. Chen & G. Fragomeni (Eds.), HCI International 2020 - Late breaking papers: Virtual and augmented reality (pp. 302-313). Cham, Switzerland: Springer.
    Chen, S., Pan, Z., Zhang, M., & Shen, H. (2013). A case study of user immersion-based systematic design for serious heritage games. Multimedia Tools and Applications, 62(3), 633-658.
    Chin, J. P., Diehl, V. A., & Norman, K. L. (1988). Development of an instrument measuring user satisfaction of the human-computer interface. Proceedings of the SIGCHI conference on human factors in computing systems, 213-218.
    Coluccia, E., Iosue, G., & Brandimonte, M. A. (2007). The relationship between map drawing and spatial orientation abilities: A study of gender differences. Journal of Environmental Psychology, 27(2), 135-144.
    Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24(3), 329-340.
    Darken, R. P., & Peterson, B. (2002). Spatial orientation, wayfinding, and representation. In K. M. Stanney (Ed.), Handbook of virtual environments: Design, implementation and applications (pp. 493-518). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
    Darken, R. P., & Sibert, J. L. (1993). A toolset for navigation in virtual environments. Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, 157-165.
    Darken, R. P., & Sibert, J. L. (1996). Wayfinding strategies and behaviors in large virtual worlds. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 142-149.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
    Defetyer, M. A., Russo, R., & McPartlin, P. L. (2009). The picture superiority effect in recognition memory: A developmental study using the response signal procedure. Cognitive Development, 24(3): 265-273.
    Devlin, A. S., & Bernstein, J. (1997). Interactive wayfinding: Map style and effectiveness. Journal of environmental psychology, 17(2), 99-110.
    Gagnon, K. T., Thomas, B. J., Munion, A., Creem-Regehr, S. H., Cashdan, E. A., & Stefanucci, J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 180, 108-117.
    Garlandini, S., & Fabrikant, S. I. (2009). Evaluating the effectiveness and efficiency of visual variables for geographic information visualization. In K. S. Hornsby, C. Claramunt, M. Denis & G. Ligozat (Eds.), Spatial information theory (pp. 195-211). Berlin, Germany: Springer-Verlag.
    Guiberson, P. F. (2007). An examination of transparency as a visual variable for the mapping sciences. Unpublished doctoral dissertation, University of Nebraska, Lincoln, NE.
    Gustafson, S., Baudisch, P., Gutwin, C., & Irani, P. (2008). Wedge: Clutter-free visualization of off-screen locations. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '08), 787-796.
    Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209(1), 49-58.
    Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34, 151-176.
    Hornbæk, K., Bederson, B. B., & Plaisant, C. (2002). Navigation patterns and usability of zoomable user interfaces with and without an overview. ACM Transactions on Computer-Human Interaction (TOCHI), 9(4), 362-389.
    Hornbæk, K., & Hertzum, M. (2011). The notion of overview in information visualization. International Journal of Human-Computer Studies, 69(7-8), 509-525.
    Jansen-Osmann, P. (2002). Using desktop virtual environments to investigate the role of landmarks. Computers in Human Behavior, 18(4), 427-436.
    Jansen-Osmann, P., & Wiedenbauer, G. (2004). The representation of landmarks and routes in children and adults: A study in a virtual environment. Journal of Environmental Psychology, 24, 347-357.
    Kraak, M. J., & Brown, A. (2001). Web cartography: Developments and prospects. London, UK: Taylor and Francis.
    LaViola JR, J.J., Kruijff, E., McMahan, R., Bowman D. A, & Poupyrev, I. (2017). 3D user interfaces: Theory and practice (2nd ed.). Reading, Massachusetts, USA: Addison-Wesley Professional.
    Lin, C. T., Huang, T. Y., Lin, W. J., Chang, S. Y., Lin, Y. H., Ko, L. W., et al. (2012). Gender differences in wayfinding in virtual environments with global or local landmarks. Journal of Environmental Psychology, 32, 89-96.
    Lobben, A. K. (2004). Tasks, strategies and cognitive processes associated with navigational map reading: A review perspective. The Professional Geographer, 56(2), 270-281.
    Löwen, H., Krukar, J., & Schwering, A. (2019) Spatial learning with orientation maps: The influence of different environmental features on spatial knowledge acquisition. ISPRS International Journal of Geo-Information, 8(3), 149-164.
    MacEachren, A. M. (1992). Visualizing uncertain information. Cartographic Perspectives, 13, 10-19.
    Mareia C. (1985) Linn, emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479-14.
    Marín-Morales, J., Higuera-Trujillo, J. L., De-Juan-Ripoll, C., Llinares, C., Guixeres, J., Iñarra, S., & Alcañiz, M. (2019). Navigation comparison between a real and a virtual museum: Time-dependent differences using a head mounted display. Interacting with Computers, 31(2), 208-220.
    Martens, J., & Antonenko, P. D. (2012). Narrowing gender-based performance gaps in virtual environment navigation. Computers in Human Behavior, 28(3), 809-819.
    McGookin, D. K., Herteleer, I., & Brewster, S. A. (2011). Transparency in mobile navigation. Proceedings of CHI’ 11 Extended Abstracts on Human Factors in Computing Systems, 1903-1908.
    Medina, J. (2010). Brain rules: 12 Principles for surviving and thriving at work, home, and school. Seattle, WA: Pear Press.
    Mitsudo, H. (2003). Information regarding structure and lightness based on phenomenal transparency influences the efficiency of visual search. Perception, 32, 53-66.
    Ni, T., Bowman, D. A., & Chen, J. (2006). Increased display size and resolution improve task performance in information-rich virtual environments. Proceedings of the Graphics Interface 2006, 139-146.
    Norman, D. A. (1988). The psychology of everyday things. New York, NY: Basic Books.
    Nurminen,A., & Oulasvirta, A. (2008). Designing interactions for navigation in 3D mobile maps. In L. Meng, A. Zipf & S. Winter (Eds.), Map-based mobile services: Design, interaction and usability (pp. 198-224). London, UK: Springer.
    Parush, A., & Berman, D. (2004). Navigation and orientation in 3D user interfaces: The impact of navigation aids and landmarks. International Journal of Human–Computer Studies, 61(3), 375-395.
    Rahman, Q., Andersson, D., & Govier, E. (2005). A specific sexual orientation-related difference in navigation strategy. Behavioral Neuroscience, 119, 311-316.
    Ramloll, R., & Mowat, D. (2001). Wayfinding in virtual environments using an interactive spatial cognitive map. Proceedings of the Fifth International Conference on Information Visualisation, 574-583.
    Rebelo, F., Noriega, P., Duarte, E., & Soares, M. (2012). Using virtual reality to assess user experience. Human Factors, 54(6), 964-982.
    Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimerling, A. J., & Guptill, S. C. (1995). Elements of cartography (6th ed.). New York, NY: John Wiley & Sons.
    Ruotolo, F., Claessen, M. H. G., & van der Ham, I. J. M. (2019). Putting emotions in routes: The influence of emotionally laden landmarks on spatial memory. Psychological Research, 83, 1083-1095.
    Sanders, M. S., & McCormick, E. J. (1993). Human Factors in Engineering and Design (7th ed.). New York, NY: McGraw-Hill Book Company.
    Satalich, G. A. (1995). Navigation and wayfinding in virtual reality: Finding the proper tools and cues to enhance navigational awareness. Unpublished doctoral dissertation, University of Washington, Seattle, WA.
    Saucier, D. M., Green, S. M., Leason, J., MacFadden, A., & Elias, L. J. (2002). Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behavioral Neuroscience, 116, 403-410.
    Schmid, F., Richter, K. F., & Peters, D. (2010). Route aware maps: Multigranular wayfinding assistance. Spatial Cognition & Computation, 10(2-3), 184-206.
    Schuurink, L. E., & Toet, A. (2010). Effects of third person perspective on affective appraisal and engagement: Findings from second life. Simulation Gaming, 41(5), 724-742.
    Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9-55.
    Silverman, I., Choi, J., Mackewn, A., Fisher, M., Moro, J., & Olshansky, E. (2000). Evolved mechanisms underlying wayfinding: Further studies on the hunter-gatherer theory of spatial sex differences. Evolution and Human Behavior, 21(3), 201-213.
    Silverman, I., Choi, J., & Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of sexual behavior, 36(2), 261-268.
    Sjölinder, M., Höök, K., Nilsson, L. G., & Andersson, G. (2005). Age differences and the acquisition of spatial knowledge in a three-dimensional environment: Evaluating the use of an overview map as a navigation aid. International Journal of Human-Computer Studies, 63(6), 537-564.
    Southworth, M., & Southworth, S. (1982). Maps: A visual survey and design guide. Boston, MA: Little Brown & Co.
    Tlauka, M., Brolese, A., Pomeroy, D., & Hobbs, W. (2005). Gender differences in spatial knowledge acquired through simulated exploration of a virtual shopping centre. Journal of Environmental Psychology, 25(1), 111-118.
    Tüzün, H., & Doğan, D. (2019). The effects of using on-screen and paper maps on navigation efficiency in 3D multi-user virtual environments. International Journal of Gaming and Computer-Mediated Simulations, 11(4), 21-41.
    Walkowiak, S., Foulsham, T., & Eardley, A. F. (2015). Individual differences and personality correlates of navigational performance in the virtual route learning task. Computers in Human Behaviour, 45, 402-410.
    Wang, C., Chen, Y., Zheng, S., & Liao, H. (2019). Gender and age differences in using indoor maps for wayfinding in real environments. ISPRS International Journal of Geo-Information, 8(1), 11-30.
    Ware, C. (2000). Information visualization: Perception for design. San Francisco, CA: Morgan Kaufman.
    Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition & Computation, 9, 152-165.
    Winn, W. D., & Sutherland. S. W. (1989). Factors influencing the recall of elements in maps and diagrams and the strategies used to encode them. Journal of Educational Psychology, 81(1), 33-39.
    Wu, A., Zhang, W., & Zhang, X. (2009). Evaluation of wayfinding aids in virtual environment. International Journal of Human-Computer Interaction, 25(1), 1-21.
    Yang, Y., & Merrill, E. C. (2016). Cognitive and personality characteristics of masculinity and femininity predict wayfinding competence and strategies of men and women. Sex Roles, 76(11-12), 747-758.
    高孟君 (2012)。3D虛擬環境中認知地圖元素對尋路績效影響之研究。國立成功大學工業設計學系碩士論文,未出版,台南市。
    美國國立自然歷史博物館 (2016)。虛擬遊覽常設展覽一層。取自:https://naturalhistory.si.edu
    美國國立自然歷史博物館 (2020)。虛擬遊覽常設展覽二層。取自:https://naturalhistory2.si.edu/vt3/NMNH/z_tour-022.html
    時間機器影像中心 (2019)。建行大學網路平台用戶體驗區。取自:https://360.chinatmic.com/2-others/jhdx-main/package/cn/pc/
    游萬來、陳俊文、李佩衿 (2006)。尋路地圖視角和地標形式的使用性研究。設計學報,11 (1) ,85-95。
    張晃銘 (2006)。虛擬環境中使用者空間知識與尋路策略的探討-以地理標籤與聽覺符號為例。國立臺灣科技大學設計系碩士論文,未出版,台北市。
    中國國家博物館 (2020)。二零二零新春展數字展廳。取自:http://www.chnmuseum.cn/portals/0/web/vr/2019rcpa/

    無法下載圖示 全文公開日期 2025/12/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE