簡易檢索 / 詳目顯示

研究生: 黎人維
Ren-Wei Li
論文名稱: 探討數位微影系統中之影像畸變與補償
Study of Image Distortion and Compensation in Digital Lithography System
指導教授: 郭鴻飛
Hung-Fei Kuo
口試委員: 楊振雄
Jhen-Syong Yang
郭俞麟
Yu-Lin Kuo
徐勝均
Sheng-Dong Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 數位微影影像畸變畸變補償影像處理
外文關鍵詞: Digital Lithography, Image Distortion, Distortion Calibration, Image Processing
相關次數: 點閱:378下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在數位微影製程中,像差對半導體和微機電系統製造品質的影響至關重要, 因此,有效地校正由數位微影系統產生的畸變是提升製程良率的重大研究議題。 在本篇研究中,我們深入探討數位微影系統的畸變補償問題,並提出一套完整的 畸變校正程序以及影像畸變的演算法,為了準確量化影像畸變的程度,我們提出 一套應用量測不確定度的評估標準,藉此對由成像產生的畸變進行量化與補償目 標圖案的計算。此外,本論文亦提出了兩種主要的演算法:影像畸變量測演算法 和影像畸變校正演算法,藉由該兩種演算法效地應用於修正 DMD 數位微影系統 所產生的成像畸變誤差。在本研究中,我們針對三種不同畸變因子對目標圖案的 影響進行分析。每種畸變因子的影響都在晶圓的不同位置重複量測十次,以降低 隨機量測誤差。根據量測結果和影像畸變校正後的數據,我們發現原始的 RMSE 分別由線性畸變的 24μm、非線性畸變的 6μm 和綜合性畸變的 23μm,降低至 0.998μm、0.966μm、0.934μm。換言之,校正後的影像,其 RMSE 都能被修正至 約 1μm 左右。若比較修正前後的數據,整體的 RMSE 可降低 92.5%。這一結果 證明了我們開發的演算法具有強大的適應性,無論是對線性、非線性畸變,或是 綜合畸變因子,都能有效進行校正。此外,即便在多種畸變因子共同作用的情況 下,該演算法依舊能保持高適應性的校正效能。本實驗室提出的影像畸變校正演 算法亦可直接應用於不同數位微影系統上而不需再額外更改光學架構,對於不同 數位微影系統皆具有極高的適用性。


    In digital lithography, aberrations significantly affect the quality of semiconductor and microelectromechanical systems (MEMS). This study explores distortion issues in such systems and proposes a distortion correction procedure and related algorithms. A novel evaluation standard quantifies image distortion, aiding in defining compensation targets. Two main algorithms for measuring and correcting image distortion have been effectively used to rectify errors in DMD digital lithography systems. According to our results, the original Root Mean Square Error (RMSE) from linear distortion of 24μm, nonlinear distortion of 6μm, and comprehensive distortion of 23μm, were significantly reduced to 0.998μm, 0.966μm, and 0.934μm respectively. This drastic reduction translates to an overall RMSE decrease of 92.5%. These results underscore the robust adaptability of our developed algorithms for effectively correcting various types of distortion. One key advantage is that our proposed image distortion correction algorithm can be directly applied to various digital micro-imaging systems without needing additional modifications to the optical structure, demonstrating its broad applicability.

    目錄 致謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻探討 4 1.3 研究動機 5 1.4 論文架構 6 第二章 數位微影系統影像畸變 8 2.1 簡介 8 2.2 連接影像畸變與像差理論 8 2.3 基於光學系統之獻因子 13 2.4 量測不確定度 21 2.5 小結 28 第三章 影像畸變模型與量測 29 3.1 簡介 29 3.2 畸變影像生成模型 29 3.3 畸變量測 34 3.4 生成模型與量測驗證 41 3.5 小結 45 第四章 影像畸變補償 47 4.1 簡介 47 4.2 補償演算法 47 4.3 光阻圖案設計與量測 57 4.4 補償驗證 62 4.5 小結 73 第五章 結論 74 5.1 實驗結果分析 74 5.2 本研究之貢獻 75 5.3 研究之未來方向 76 參考文獻 77

    [1] M. Tu et al., "Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks," Nature Materials, vol. 20, no. 1, pp. 93-99, 2021.
    [2] Y. Watanabe et al., "Technology development progress of digital scanner," in Optical and EUV Nanolithography XXXV, SPIE, vol. 12051: pp. 44-5,2022.
    [3] I. Servin et al., "Process development of a maskless N40 via level for security application with multi-beam lithography," in Novel Patterning Technologies 2018, SPIE,vol. 10584: pp. 198-208. 2018.
    [4] S.-B. Wen, A. Bhaskar, and H. Zhang, "Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution," Journal of Micromechanics and Microengineering, vol. 28, no. 7, p. 075011, 2018.
    [5] Y. Watanabe et al., "Development of deep ultraviolet optical maskless exposure tool for advanced lithography," Journal of Micro/Nanopatterning, Materials, and Metrology, vol. 22, no. 4, pp. 041403-041403, 2023.
    [6] J.-Y. Hur and M.-S. Seo, "Optical proximity corrections for digital micromirror device-based maskless lithography," Journal of the Optical Society of Korea, vol. 16, no. 3, pp. 221-227, 2012.
    [7] D. MacMillen and W. Ryden, "Analysis of image field placement deviations of a 5x microlithographic reduction lens," in Optical Microlithography I: Technology for the Mid-1980s, SPIE,vol. 334: pp. 78-89, 1982
    [8] S. Yang et al., "Flexible digital projector calibration method based on per-pixel distortion measurement and correction," Optics and Lasers in Engineering, vol. 92, pp. 29-38, 2017.
    [9] Q.-K. Li, Y. Xiao, H. Liu, H.-L. Zhang, J. Xu, and J.-H. Li, "Analysis and correction of the distortion error in a DMD based scanning lithography system," Optics Communications, vol. 434, pp. 1-6, 2019.
    [10] M. Habets, J. Scholten, S. Weiland, and W. Coene, "Multi-mirror adaptive optics for control of thermally induced aberrations in extreme ultraviolet lithography," in Extreme Ultraviolet (EUV) Lithography VII, SPIE,vol. 9776: SPIE, pp. 662-673, 2016.
    [11] D. W. Kang, M. Kang, and J. W. Hahn, "Keystone error analysis of projection optics in a maskless lithography system," International Journal of Precision Engineering and Manufacturing, vol. 16, pp. 373-378, 2015.
    [12] S. Zhou, Z. Lu, Q. Yuan, G. Wu, C. Liu, and H. Liu, "Measurement and compensation of a stitching error in a DMD-based step-stitching photolithography system," Applied Optics, vol. 60, no. 29, pp. 9074-9081, 2021.
    [13] Y.-S. Syu, Y.-B. Huang, M.-Z. Jiang, C.-Y. Wu, and Y.-C. Lee, "Maskless lithography for large area patterning of three-dimensional microstructures with application on a light guiding plate," Optics Express, vol. 31, no. 8, pp. 12232-12248, 2023.
    [14] B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, "Development of a deep silicon phase Fresnel lens using gray-scale lithography and deep reactive ion etching," Journal of microelectromechanical systems, vol. 13, no. 1, pp. 113-120, 2004.
    [15] G.-m. Dai, Wavefront optics for vision correction. SPIE press, 2008.
    [16] J. Weng, P. Cohen, and M. Herniou, "Camera calibration with distortion models and accuracy evaluation," IEEE Transactions on pattern analysis and machine intelligence, vol. 14, no. 10, pp. 965-980, 1992.
    [17] S. Huang, M. Li, L. Wang, Y. Su, and Y. Liang, "Precise fabrication of large-area microstructures by digital oblique scanning lithography strategy and stage self-calibration technique," Applied Physics Express, vol. 12, no. 9, p. 096501, 2019.
    [18] C. Peng, Z. Zhang, J. Zou, and W. Chi, "A high-speed exposure method for digital micromirror device based scanning maskless lithography system," Optik, vol. 185, pp. 1036-1044, 2019.
    [19] H.-L. Chien, Y.-H. Chiu, and Y.-C. Lee, "Maskless lithography based on oblique scanning of point array with digital distortion correction," Optics and Lasers in Engineering, vol. 136, p. 106313, 2021.
    [20] H. Jin and Y. Qi, "Review of overlay error and controlling methods in alignment system for advanced lithography," in Thirteenth International Conference on Information Optics and Photonics (CIOP 2022), SPIE, vol. 12478: pp. 1002-1017, 2022.
    [21] Y. Gao, T. Shen, J. Chen, N. Luo, X. Qi, and Q. Jin, "Research on high-quality projecting reduction lithography system based on digital mask technique," Optik, vol. 116, no. 7, pp. 303-310, 2005.
    [22] J. P. C. Narag, N. A. F. Zambale, and N. Hermosa, "Scale distortion correction of a digital micromirror device using diffraction caustics," Optics and Lasers in Engineering, vol. 134, p. 106122, 2020.
    [23] D.-H. Lee, "Optical System with 4㎛ Resolution for Maskless Lithography Using Digital Micromirror Device," Journal of the Optical Society of Korea, vol. 14, no. 3, pp. 266-276, 2010.
    [24] N. Sahu, B. Parija, and S. Panigrahi, "Fundamental understanding and modeling of spin coating process: A review," Indian Journal of Physics, vol. 83, no. 4, pp. 493-502, 2009.
    [25] W. Yang et al., "Novel diffraction-based spectroscopic method for overlay metrology," in Metrology, Inspection, and Process Control for Microlithography XVII, vol. 5038: SPIE, pp. 200-207,2003.
    [26] L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Courier Corporation, 2012.
    [27] N. Jiang and L. Wang, "Quantum image scaling using nearest neighbor interpolation," Quantum Information Processing, vol. 14, no. 5, pp. 1559-1571, 2015.
    [28] E. Aho, J. Vanne, K. Kuusilinna, and T. Hamalainen, "Comments on" Winscale: an image-scaling algorithm using an area pixel Model"," IEEE Transactions on circuits and systems for video technology, vol. 15, no. 3, pp. 454-455, 2005.
    [29] W.-C. Wu, T.-H. Wang, and C.-T. Chiu, "Edge Curve Scaling and Smoothing with Cubic Spline Interpolation for Image Up-Scaling," Journal of Signal Processing Systems, vol. 78, no. 1, pp. 95-113, 2015/01/01 2015
    [30] C. E. Duchon, "Lanczos filtering in one and two dimensions," Journal of Applied Meteorology and Climatology, vol. 18, no. 8, pp. 1016-1022, 1979.
    [31] I. Smal, M. Loog, W. Niessen, and E. Meijering, "Quantitative comparison of spot detection methods in fluorescence microscopy," IEEE transactions on medical imaging, vol. 29, no. 2, pp. 282-301, 2009.
    [32] J. Illingworth and J. Kittler, "A survey of the Hough transform," Computer vision, graphics, and image processing, vol. 44, no. 1, pp. 87-116, 1988.
    [33] S. Ghosal and R. Mehrotra, "Orthogonal moment operators for subpixel edge detection," Pattern recognition, vol. 26, no. 2, pp. 295-306, 1993.
    [34] L. G. Brown, "A survey of image registration techniques," ACM computing surveys (CSUR), vol. 24, no. 4, pp. 325-376, 1992.
    [35] K. Mikolajczyk and C. Schmid, "An affine invariant interest point detector," in Computer Vision—ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part I 7: Springer, pp. 128-142, 2002.
    [36] Z. Zhang, "A flexible new technique for camera calibration," IEEE Transactions on pattern analysis and machine intelligence, vol. 22, no. 11, pp. 1330-1334, 2000.
    [37] F. Wu, H. Wei, and X. Wang, "Correction of image radial distortion based on division model," Optical Engineering, vol. 56, no. 1, pp. 013108-013108, 2017.
    [38] K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Quarterly of applied mathematics, vol. 2, no. 2, pp. 164-168, 1944.
    [39] S.-C. Horng, "Compensating modeling overlay errors using the weighted least-squares estimation," IEEE Transactions on Semiconductor Manufacturing, vol. 27, no. 1, pp. 60-70, 2013.
    [40] S. Li, C. Xu, and M. Xie, "A robust O (n) solution to the perspective-n-point problem," IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 7, pp. 1444-1450, 2012.
    [41] G. G. Slabaugh, "Computing Euler angles from a rotation matrix," Retrieved on August, vol. 6, no. 2000, pp. 39-63, 1999.
    [42] A. Cheddad, "Structure preserving binary image morphing using Delaunay triangulation," Pattern Recognition Letters, vol. 85, pp. 8-14, 2017.
    [43] Z. Hossein-Nejad, H. Agahi, and A. Mahmoodzadeh, "Image matching based on the adaptive redundant keypoint elimination method in the SIFT algorithm," Pattern Analysis and Applications, vol. 24, pp. 669-683, 2021.
    [44] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.
    [45] U. Sara, M. Akter, and M. S. Uddin, "Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study," Journal of Computer and Communications, vol. 7, no. 3, pp. 8-18, 2019.
    [46] R. Chen et al., "Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique," Optics Express, vol. 25, no. 18, pp. 21958-21968, 2017.
    [47] X. Ma et al., "Experimental study of numerical optimization for 3-D microstructuring using DMD-based grayscale lithography," Journal of Microelectromechanical Systems, vol. 24, no. 6, pp. 1856-1867, 2015.

    無法下載圖示 全文公開日期 2025/08/07 (校內網路)
    全文公開日期 2025/08/07 (校外網路)
    全文公開日期 2025/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE