簡易檢索 / 詳目顯示

研究生: 周郁呈
YU-CHENG CHOU
論文名稱: 兩種分佈式布里淵光纖感測系統的研究與比較
Two Distributed Brillouin Scattering Fiber Sensing Systems: Study and Comparison
指導教授: 廖顯奎
Shien-Kuei Liaw 
口試委員: 李三良
San-Liang Lee 
梁財春
Tsair-Chun Liang
廖啟雯
Chi-Wen Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 127
中文關鍵詞: 受激布里淵散射效應分佈式光纖感測布里淵相關域分析法布里淵時域分析法
外文關鍵詞: Stimulated Brillouin scattering, Distributed fiber sensing, Brillouin optical correlation domain analysis, Brillouin optical time domain analysis
相關次數: 點閱:342下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在優化一基於布里淵散射之分佈式光纖感測系統,主要優化項目包括空間解析度、量測距離,並探討比較布里淵相關域分析法以及布里淵光時域分析法。首先介紹分佈式光纖感測系統量測原理並歸納重要參數,透過選取參考頻率,以及分析探測光單邊頻帶調制改善空間解析度。在參考頻率選擇5、1、0.5和0.125MHz中,發現當參考頻率設為0.5或0.125 MHz,才能進行準確的資料解析,在一樣的實驗條件下0.125 MHz作為後續實驗參數。
    在未購入單邊頻帶調制器前,利用實驗室自製光纖光柵設計出反射型架構進行單邊頻帶調制,達到約20 dB的抑制效果,調制效果有相當的限制;在使用”單邊頻帶調制器搭配布拉格光纖光柵”架構能達到最佳的調制效果,達到約30 dB的抑制效果;原架構中,於鎖相放大器前使用FFP-可調式電濾波器,預防光功率太高,透由調整適當鎖相放大器的靈敏度,可不使用FFP-可調式電濾波器,就能正確讀取資料,優化輸入訊號品質;更換新的DFB-LD,有更好的輸出功率與更窄的雷射線寬利於單邊頻帶調制,且較窄的線寬使相關峰值更窄,類似有更窄的探測頭,助於系統性能提升;將訊號產生器1更換成效能佳的,在掃頻上的運作時間更快,且其針對調變振幅選取由原本的的100 mV為單位小至1 mV,在調變深度的選取能更準確。原先掃頻速度11.66 point/min,更換後掃頻速度24.07 point/min,速度提升2倍以上,大幅改善量測效率,透由參數的設定與架構的改良,最後量測距離提升到313公尺並有3公尺之空間解析度;分析BOCDA與BOTDA兩大系統,BOCDA系統具有高解析度與快速的資料分析,適合應用於動態應變與高精度應變的監測上,但是受到感測距離的限制,尚未有商業化的產品;而BOTDA最大的優勢就在長距離的感測,已經有商業化的產品產出,利用對BOTDA系統的了解,設法利用現有儀器設計出BOTDA系統。


    The aim of this thesis is to improve a distributed fiber sensing system based on Stimulated Brillouin scattering (SBS) effect while the improved characteristics include spatial resolution and sensing range. What’s more, we compare the differences between Brillouin optical correlation domain analysis and Brillouin optical time domain analysis. In the experiment, we introduced the measuring principle of distributed fiber sensing system and defined the importance of parameters. While the spatial resolution was affected by the reference frequency and the sideband component suppressed in the probe. Among choosing the reference frequency from 0.125MHz to 5 MHz, we found that the accurate data could be obtained when the reference frequency was set at 0.125 MHz. Therefore, we set the reference frequency of 0.125 MHz as a parameter in this study.
    Before we purchased the single sideband modulator, the homemade tunable fiber Bragg grating using for obtaining single sideband modulation was discussed. At first, we design and investigate the reflection type (R-type) setups for SSB to improve the data. However, it was not good enough because the difference of optical power between the upper sideband (USB) and lower sideband (LSB) was only about 20 dB by using R-type setup. Finally, the suppression ratio of the other frequency components in the probe was more than 30 dB by combining a single side band modulator (SSBM) with a tunable fiber Bragg grating (FBG).
    In the original experimental setup, the fiber Fabry-Perot (FFP) tunable filter was used before the lock-in amplifier (LIA) in order to prevent the power from getting too high. We also adjusted the sensitivity of the lock-in amplifier so we could read the data correctly without FFP-tunable filter and optimize the input signal quality.
    Afterward, we replace the new DFB-LD with better output power and narrower linewidth because it was useful for single side band modulation. The narrow linewidth not only improved the system performance but also made the correlation peak narrower; that is, it was similar to a narrower sensing point. Moreover, by replacing the signal generator, the operation time on the frequency sweep would be faster; while the speed increased more than two times from 11.66 points/min to 24.07 points/min. As for the modulation amplitude, it was selected from the original 100 mV unit as small as 1 mV so the modulation depth of the selection could be more accurate. Finally, we successfully achieved the measurement range to 313 m with 3 m spatial resolution.
    Finally, we also analyze BOCDA and BOTDA, BOCDA is suitable for the sensing system with dynamic strain measurement and high precision strain measurement because of the high spatial resolution and fast data acquisition. There has been a challenge to achieve commercial products in BOCDA because the measurement range is not long enough. On the other hand, BOTDA is good at measuring long range so there are commercial products based on BOTDA. To understand the BOTDA system, the future researchers may try to use the existing equipment to design BOTDA system.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖表索引 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 分佈式光纖感測原理 4 2.1 光纖感測技術 4 2.1.1 單點式光纖感測器 4 2.1.2 分佈式光纖感測器 6 2.2 光的散射 7 2.2.1 瑞利散射 9 2.2.2 拉曼散射 10 2.2.3 布里淵散射 11 2.3 BOTDA系統介紹 13 2.3.1 BOTDA系統 13 2.3.2 BOTDA重要參數分析 14 2.4 BOCDA系統介紹 16 2.4.1 BOCDA系統 16 2.4.2 BOCDA重要參數分析 17 2.5 BOCDA系統優化文獻探討 20 2.5.1 空間解析度優化方法 20 2.5.2 量測距離提升方法 23 2.5.3 動態量測速度提升方法 25 2.5.4 文獻整理 28 第三章 BOCDA系統資料讀取 29 3.1 本論文實現BOCDA系統架構 29 3.2 元件與儀器介紹 33 3.2.1 光纖被動元件 33 3.2.2 分佈式回授雷射二極體 35 3.2.3 摻鉺光纖放大器(Erbium-doped Fiber Amplifier, EDFA) 36 3.2.4 光衰減器 (Optical attenuator) 38 3.2.5 電光調變器 (Electro-optic modulator) 38 3.2.6 極化控制器 (Polarization controller) 39 3.2.7 Fiber Fabry-Perot 可調式濾波器 40 3.2.8 鎖相放大器(Lock-in amplifier) 40 3.2.9 單邊頻帶調制器 (Single Side Band Modulator) 41 3.2.10 訊號產生器(Signal Generator) 42 3.3 系統資料讀取 43 3.3.1 鎖相放大器讀值原理 43 3.3.2 Matlab讀取資料 45 3.4 參考頻率選擇 52 3.4.1 系統的調變訊號 52 3.4.2 無參考頻率訊號 53 3.4.3 不同頻率值的參考頻率訊號 56 第四章 BOCDA系統優化 63 4.1 單邊頻帶調制 63 4.1.1 單邊頻帶調制器理論分析 63 4.1.2 單邊頻帶調制器操作方法 65 4.1.3 單邊頻帶調制器調變效果 67 4.1.4 單邊頻帶調制器結合布拉格光纖光柵調制效果 70 4.2 輸入訊號改善 75 4.2.1 改善輸入訊號 75 4.2.2 調整靈敏度準位 77 4.3 本論文實驗架構改善與成果比較 84 4.3.1 建置系統架構 84 4.3.2 系統改善-突破量測距離60公尺 88 4.3.3 系統改善-達到量測距離313公尺 92 第五章 布里淵感測系統分析 99 5.1 基於散射光之光纖感測介紹 99 5.1.1 基於散射光之光纖感測的發展 99 5.1.2 基於散射光之光纖感測比較 100 5.2 BOTDA系統架構 102 5.3 BOTDA系統優化文獻探討 104 5.3.1 空間解析度優化方法 105 5.3.2 量測距離提升方法 107 5.3.3 動態量測速度提升方法 108 5.3.4 文獻整理 109 5.4 BOCDA與BOTDA系統比較 109 5.4.1 原理比較 110 5.4.2 系統架構比較 111 5.4.3 兩系統實際應用 112 5.4.4 設計BOTDA架構與BOCDA成本比較 113 第六章 結論與未來展望 117 6.1 結論 117 6.2 未來展望 118 參考文獻 122

    [1] 廖顯奎,“當代光纖通訊”,初版,台北,高立圖書,2012年。
    [2] A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, "Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror," IEEE/OSA Journal of Lightwave Technology, vol. 30, no. 8, pp. 1168-1172, 2012.
    [3] C. Zhang, M. Kishi, and K. Hotate, “Enlargement of measurement range in Brillouin optical correlation domain analysis with high-speed random accessibility using temporal gating scheme for multiple-points dynamic strain measurement,” 24th International Conference on Optical Fibre Sensors, 2015.
    [4] W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA forhigh spatial resolution sensing,” IEEE Photonics Technology Letters, vol. 16, no. 26, pp. 21616-21625,2008 .
    [5] 張家瑞、林鶴斯、黃心華,“地下管線管理瓶頸與未來整體改善策略”,財團法人國家政策研究基金會,2014年。
    [6] K. Hotate, T. Hasegawa, “Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber using a Correlation-Based Technique--Proposal, Experiment and Simulation,” The Institute of Electronics, Information and Communication Engineers TRANSACTIONS on Electronics, vol. 5, no.3, pp. 405-412, 2000.
    [7] K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," IEEE Proceedings of the Institution of Electrical Engineers, vol. 113, pp. 1151-1158, 1966.
    [8] I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Applied Physics Letters, vol. 17, pp. 109-111, 1970.
    [9] 廖顯奎,“光纖原理與應用技術”,初版,台北,五南圖書,2012年。
    [10] Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring,” IEEE Photonics Journal, vol. 4, no. 3, pp. 996-1002, 2012.
    [11] K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, no. 10, pp. 1035-1037, 1993.
    [12] 高雪松,“光纖光柵在光通信領域中的應用”,2005。
    [13] K. O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, pp. 1263-1276, 1997.
    [14] 邱永芳、黃安斌、饒正、李瑞庭、陳志芳、何彦德,“全光纖式邊坡穩定監測系統整合與現地應用測試”,交通部運輸研究所,2011。
    [15] G. P. Agrawal, “Nonlinear fiber optics,” Academic Press, USA, 2001.
    [16] R. W. Boyd, “Nonlinear Optics,” Elsevier, 2003.
    [17] 光學基礎知識大講堂——第8期:光的散射, 2016。
    [18] 蔣博文,“利用自發性布里淵散射技術之分佈型應變與溫度感測”,國立交通大學光電工程研究所碩士論文,2001。
    [19] F. T. Arecchi and E. O. Schulz, Laser Handbook, vol. 2, pp. 1077-1150, 1972.
    [20] A. Minardo and A. Coscetta, “Brillouin Optical Time Domain Analysis
    in Silica Fibers at 850-nm Wavelength e,” IEEE Photonics Technology Letters, vol.28, no. 22, pp. 156-159, 2016.
    [21] 何俊,“分佈式光纖測系統關鍵技術研究”,哈爾濱工業大學電機工程學院博士論文,2004。
    [22] K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technology Letters, vol.14, no. 2, pp. 179-181, 2002.
    [23] T. Horiguchi and M. Tateda, “BOTDA-Nondestructive Measurement of Single-
    Mode Optical Fiber Attenuation Characteristics Using Brillouin Interaction: Theory,” IEEE Lightwave Technonlogy, vol.7, no. 8, pp. 1170 - 1176, 1989.
    [24] K. Hotate and T. Hasegawa, “Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based,” IEICE TRANS Electron, vol. 15, no. 3, pp. 272-274, 2000.
    [25] 徐進鴻,“以極化差異法與PXI平台改善分佈式布里淵光纖感測系統”,國立臺灣大學應用力學研究所碩士論文,2010。
    [26] 李妤翎,“分布式布里淵光纖感測系統於裂縫監測之應用”,國立臺灣大學應用力學研究所碩士論文,2009。
    [27] 楊仕偉,“以內埋式光纖光柵感測器監測碳纖維複合材料衝擊及疲勞破壞之應用”,國立臺灣大學機械工程研究所碩士論文,2009。
    [28] J. H. Jeong, K. Lee, K. Y. Song, J. H. Lee, “Simplified Brillouin optical correlation domain analysis sensor based on a chopped microwave applied single sideband electro-optic modulator,” IEEE Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, pp. 1-3, 2013.
    [29] 王楚崴,“以分佈式布里淵光纖感測系統監測碳纖維複材受衝擊後內部損傷之應用”, 國立臺灣大學機械工程研究所碩士論文,2012。
    [30] W. Zou, C. Jin and J. Chen, “Distributed Strain Sensing Based on Combination of Brillouin Gain and Loss Effects in Brillouin Optical Correlation Domain Analysis,” The Japan Society of Applied Physics Express vol. 5, no. 8, pp. 100-103, 2012.
    [31] R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technology Letters, vol. 26, no. 5, pp. 473-476, 2014.
    [32] K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photonics Technology Letters, vol. 18, no. 3, pp. 499-501, 2006.
    [33] C. Zhang, M. Kishi, and K. Hotate, “Enlargement of measurement range in Brillouin optical correlation domain analysis with high-speed random accessibility using temporal gating scheme for multiple-points dynamic strain measurement,” 24th International Conference on Optical Fibre Sensors, 2015.
    [34] K. Washiyama, M. Kishi, Z. He, K. Hotate, “High Speed BOCDA Measurement of Strain Distribution by Longitudinal Sweep Method,” Progress in Optical Sensing and Environmental Monitoring, 2013.
    [35] C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Applied Physics Express, vol. 8, no. 4, 2015.
    [36] T. Horiguchi, T. Kurashima and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technology Letters, vol. 1, no. 5, pp. 107-108, 1989.
    [37] T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects on Brillouin frequency shift in jacketed optical silica fibers,” OSA Applied Optics, vol. 29, no. 15, pp. 2219-2222, 1990.
    [38] 連紀文、卓秀者,“基於BOTDA的OPPC溫度與應力監測研究與應用”,中國核心期刊,第1期,第8卷,2016。
    [39] W. Zou, X. Long, and J. Chen, “Brillouin Scattering in Optical Fibers and Its Application to Distributed Sensors,” Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, 2015.
    [40] 胡紹民和張飛爰,“基於DSP與採樣ADC的數字鎖相放大器”,數據分析期刊,第15期,第2卷,2002。
    [41] Model SR844 RF Lock-In Amplifier產品型錄
    [42] 王雅馨,“鎖相放大器研究及其去除光雜訊之應用”,國立彰化師範大學光電科技研究所碩士論文,2004。
    [43] 李承軒,“受激布里淵散射效應之分佈式光纖感測系統性能優化”,國立臺灣灣科技大學電子工程研究所碩士論文,2016。
    [44] Sumitomo Osaka Cement生產X cut LN SSB-SC Modulator產品型錄
    [45] 沈育霖,“光纖分布式感測技術於結構安全監測之多功應用研究”,國立臺灣大學應用力學研究所博士論文,2010。
    [46] 沈逸民,“高性能布里渊光时域分析分布式傳感的研究”,浙江大學訊息與電子工程學院碩士論文,2013。
    [47] T. Kurashima, T. Horiguchi, amd H. Izumita, “Brillouin Optical-Fiber Time Domain Reflectometry,” IEICE TRANSACTIONS on Communications, vol. 6, no. 4, pp. 382-390, 1993.
    [48] 侯俊芳、翡麗、李卓軒、劉超,“光纖傳感技術的研究發展及應用”,光電應用期刊,第1期,第27卷,2012。
    [49] 謝超超,“基於BOTDA分佈式光纖傳感器的結構健康監測研究”,哈爾濱工業大學土木工程學院碩士論文,2013。
    [50] X. Bao, D. J. Webb and D. A. Jackson, “22 km distributed strain sensor using Brillouin lossin an optical fiber, ”Optics Communications, vol. 2, no. 4, p298-302, 1994.
    [51] K. Kinzo, C. H. Lin and N. Kenichi, “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” IEICE Technology, vol. 105, no. 242, pp. 1-6, 2005.
    [52] Y. Mao, N. Guo, K. L. Yu, H. Y. Tam and C. Lu, “1-cm-Spatial-Resolution Brillouin Optical Time-Domain Analysis Based on Bright Pulse Brillouin Gain and Complementary Code,” IEEE Photonics Technology Letters, vol.4, no. 6, pp. 146-153, 2012.
    [53] M. A. Soto,T. Mohammad, G. Bolognini and D. Fabrizio, “Simplex-Coded BOTDA Sensor Over 120-km SMF With 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photonics Technology Letters, vol.24, no. 20, pp. 1823-1826, 2011.
    [54] Y. Dong, L. Chen and X. Bao, “Extending the Sensing Range of Brillouin Optical Time-Domain Analysis Combining Frequency-Division Multiplexing and In-Line EDFAs,” IEEE/OSA Journal of Lightwave Technology, vol.30, no. 8, pp. 1161-1167, 2012.
    [55] Y. Peled, A. Motil, and M. H. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” OSA Optics Letters, vol.20, no.8, pp.823-831, 2012.
    [56] 張靜文、呂安強和楊志,“基於BOTDA的分佈式光纖傳感技術研究進展”,光通信期刊,第4期,第8卷,2010。
    [57] Q. Sun, S. Sun, and M. Zhou, “Long-range distributed temperature sensing with sub-meter scale spatial resolution based on BOTDA employing pre-pumped Golay coding,” 25th International Conference on Optical Fibre Sensors, 2017.

    QR CODE