簡易檢索 / 詳目顯示

研究生: 陳冠宏
Guan-Hong Chen
論文名稱: 布里淵光時域分析法的研究與建置
Study and Implement of Optical Brillouin Time-domain Analysis
指導教授: 廖顯奎
Shien Kuei Liaw
口試委員: 廖顯奎
Shien-Kuei Liaw
李三良
San-Liang Lee
廖啓雯
Chi-Wen Liao
沈育霖
Yu-Lin Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 布里淵散射時域分析分佈式光纖感測長距離感測布里淵 光時域分析系統
外文關鍵詞: long distance sensing
相關次數: 點閱:205下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文詳述了布里淵分佈式光纖感測技術的研究現狀,論述了布里淵散射如何發生及時域系統建立的關鍵及布里淵散射的特徵參數,布里淵頻移與待測光纖對應關係,並實踐布里淵光時域感測系統,選取需要的儀器,並透過參數的微調和選取達到受激布里淵散射現象發生,最重要的是系統後端的資料判讀以及處理,本文也針對布里淵散射系統進行脈衝寬度對布里淵增益頻譜的影響,進行了研究分析和系統設計。首先我們闡述了布里淵光學的歷史進程並提到分佈式感測的優點,也說明分佈式光纖感測與布里淵光學的發展與重要性,再簡述本論文之研究動機與論文架構。介紹光學散射原理,分別介紹了彈性散射、拉曼散射及布里淵散射,並進行文獻探討;而後進行了對分佈式感測系統常見的例子進一步探究。
    於本論文中段對布里淵光時域分析系統架構做初步介紹,且因為應用的實驗儀器眾多,也將說明各項儀器扮演的角色;如何解讀光訊號與電訊號代表的意義,為重要的一環,並以原理和實驗探討最佳的基本參數,而後逐步分析布里淵增益頻譜,對布里淵散射系統脈衝寬度對布里淵增益頻譜的影響,也對可調式濾波器的濾波的波長和功率對布里淵增益頻譜的影響,進行了研究分析,最後並建立整個系統操作流程。最後,因布里淵光時域分析系統中,脈衝光如同探測頭一般,經過光纖時可以使待測區各點回饋一個布里淵增益值,達到分佈式感測效果,嘗試拉長測量距離、縮短不規則區以此提高空間解析度,最後我們得到了1.6公里、2公里、10公里的長度量測,且有辦法量測到2公里單模光纖 / 5米色散移位光纖和3.6公里單模光纖 / 5米色散移位光纖的空間解析度。


    The research history of Brillouin distributed optical fiber sensing technology and the key point of time domain system are discussed in this thesis. How Brillouin scattering works, its characteristic parameters,and the relationship between Brillouin frequency shift and Fiber Under Test (FUT) are mentioned as well.By experiments, we found the proper instructions and parameters to comply aBrillouin optical time domain analysis (OBTDA) sensing system. We also analyzed the influence of pulse width on Brillouin gain spectrum based on the data of we obtain from Brillouin scattering system.
    Firstly, we review the historical process of Brillouin optics and mention the advantages of distributed sensing. We also explain the development and importance of distributed fiber sensing and Brillouin optics. Then the research motivation and thesis structure of this paper are briefly described. The thesis introduces the principle of optical scattering, elastic scattering, Raman scattering and Brillouin scattering, and some prior works are reviewed. Then, the common examples of distributed sensing systems are further explored. Then in this thesis, the BOTDA system architecture is introduced. Note that the system need numerous experimental instruments, so the role of each instrument will be explained. How to interpret the meaning of optical signals and electrical signals is an important issue, and the experiment explores the best basic parameters, and then gradually analyzes the Brillouin gain spectrum, the effect of the Brillouin scattering system pulse width on the Brillouin gain spectrum. We also discuss the pass wavelength and power by the tunable filter, the effects of gain spectrum was studied and analyzed, and finally the entire system operation flow was established.
    The pulsed light is like a probe in a BOTDA system. When passing through the optical fiber, each point in the area to be tested can feed back the Brillouin gain value achieved in accordance with distributed sensing effect condition. Trying to extend the measurement distance and reduce the part of irregularities, which increases the spatial resolution. Finally, we can observe the sensing effect in a distance of 1.6km, 2km and 10km, and we obtain the spatial resolution of 5m DSF in 2km SMF and 5m DSF in 3.6km SMF.

    摘要 Abstract 致謝 目錄 圖表索引 縮寫對照清單 第1章 緒論 1.1前言 1.2研究動機 1.3論文架構 第2章 分佈式感測原理 2.1光學散射原理 2.1.1彈性散射 2.1.2拉曼散射 2.1.3布里淵散射 2.2光纖感測技術 2.2.1單點式光纖感測 2.2.2分佈式光纖感測 2.3布里淵光學之分佈式感測 2.4 BOTDA優化文獻探討 2.5光學散射的應用與比較 第3章 布里淵光學時域分析系統建置 3.1架構元組件原理與介紹 3.2系統基礎參數選取 第4章 布里淵增益量測 4.1布里淵增益頻譜 4.2布里淵增益強度優化 4.3感測系統操作流程 第5章 BOTDA量測與分析 5.1 BOTDA待測區長度量測 5.1.1量測1.6km單模光纖 5.1.2量測2km單模光纖 5.1.3量測10km單模光纖 5.2空間解析度量測 5.2.1 2km單模光纖和5m色散移位光纖 5.2.2 3.6km單模光纖和5m色散移位光纖 第6章 結論與未來展望 6.1結論 6.2未來展望 參考文獻  

    [1] Agrawal Govind P. "Nonlinear fiber optics." Nonlinear Science at the Dawn of the 21st Century. Springer, Berlin, Heidelberg, 2000. 195-211.
    [2] Pinto, A.,M. R., Lopez-Amo M., Kobelke J., and Schuster, K. "Temperature fiber laser sensor based on a hybrid cavity and a random mirror." Journal of Lightwave Technology 30.8 (2012): 1168-1172.
    [3] Zhang Chunyu, Masato Kishi, and Kazuo Hotate. "Enlargement of measurement range in Brillouin optical correlation domain analysis with high-speed random accessibility using temporal gating scheme for multiple-points dynamic strain measurement." 24th International Conference on Optical Fibre Sensors. Vol. 9634. International Society for Optics and Photonics, 2015.
    [4] Li W., Bao X., Li Y., and Chen L. "Differential pulse-width pair BOTDA for high spatial resolution sensing." Optics Express 16.26 (2008): 21616-21625.
    [5] Boyd, Robert W. Nonlinear Optics. Elsevier, 2003.
    [6] 光學基礎知識大講堂——第8期:光的散射, 2016。
    [7] Hotate Kazuo, and Takemi Hasegawa. "Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique--Proposal, Experiment and Simulation--." IEICE Transactions On Electronics 83.3 (2000): 405-412.
    [8] 蔣博文“利用自發性布里淵散射技術之分佈型應變與溫度感測”,國立交通大學光電工程研究所碩士論文,2001。
    [9] Cotter D., Smith D. W., Atkins C. G., and Wyatt R. "Influence of nonlinear dispersion in coherent narrowband amplification by stimulated Brillouin scattering." Electronics Letters 22.12 (1986): 671-672.
    [10] 李建平.高等分析化學.冶金工業出版社,2007.8
    [11] Hill K. O., Malo B., Bilodeau F., Johnson D. C., and Albert J. "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask." Applied Physics Letters 62.10 (1993): 1035-1037.
    [12] Barnoski M. K., and S. M. Jensen. "Fiber waveguides: a novel technique for investigating attenuation characteristics." Applied Optics 15.9 (1976): 2112-2115.
    [13] Wright S., D. G. Dalgoutte, and S. Salt. "Characterisation and Fault Location for Single Mode Fibres Using Long Wavelength Optical Time Domain Reflectometry (OTDR)." Single Mode Optical Fibers. Vol. 425. International Society for Optics and Photonics, 1983.
    [14] Dakin J. P., Pratt D. J., Bibby G. W., and Ross J. N. "Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector." Electronics Letters 21.13 (1985): 569-570.
    [15] Rogers A. J. "Distributed optical-fibre sensors." Journal of Physics D: Applied Physics 19.12 (1986): 2237.
    [16] Culverhouse D., Farahi F., Pannell C. N., and Jackson D. A. "Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors." Electronics Letters 25.14 (1989): 913-915.
    [17] Kurashima Toshio, Tsuneo Horiguchi, and Mitsuhiro Tateda. "Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers." Optics Letters 15.18 (1990): 1038-1040.
    [18] Horiguchi T., T. Kurashima, and Y. Koyamada. "1 m spatial resolution measurement of distributed Brillouin frequency shift in single-mode fibers." Tech. Dig. Symp. Opt. Fiber Meas.. 1994..
    [19] Nikles Marc, Luc Thevenaz, and Philippe A. Robert. "Measurement of the distributed-Brillouingain spectrum in optical fibers by using a single laser source." Optical Fiber Communication Conference. Optical Society of America, 1994.
    [20] Bao X., Brown A."Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (< 10-ns) pulses." Optics Letters 24.8 (1999): 510-512.
    [21] Lecoeuche V., Webb D. J., Pannell C. N., and Jackson D. A. "Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time." Optics Letters 25.3 (2000): 156-158.
    [22] Zou L., Bao X., Wan Y., and Chen L."Coherent probe-pump-based Brillouin sensor for centimeter-crack detection." Optics Letters 30.4 (2005): 370-372.
    [23] Brown Anthony W., Bruce G. Colpitts, and Kellie Brown. "Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution." Journal of Lightwave Technology 25.1 (2007): 381-386.
    [24] Soto Marcelo A., Gabriele Bolognini, and Fabrizio Di Pasquale. "Long-range simplex-coded BOTDA sensor over 120km distance employing optical preamplification." Optics Letters 36.2 (2011): 232-234.
    [25] Thévenaz Luc. "Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives." Frontiers of Optoelectronics in China 3.1 (2010): 13-21.
    [26] Shimizu, Kaoru, Tsuneo Horiguchi, and Yahei Koyamada. "Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry." Optics Letters 20.5 (1995): 507-509.
    [27] Zhang Chunyu, Masato Kishi, and Kazuo Hotate. "Enlargement of measurement range in Brillouin optical correlation domain analysis with high-speed random accessibility using temporal gating scheme for multiple-points dynamic strain measurement." 24th International Conference on Optical Fibre Sensors. Vol. 9634. International Society for Optics and Photonics, 2015.
    [28] 李妤翎,“分布式布里淵光纖感測系統於裂縫監測之應用”,國立臺灣大學應用力學研究所碩士論文,2009。
    [29] Jeong J. H., Lee K., Song K. Y., Lee J. H., Jeong J. M., and Lee S. B. "Simplified Brillouin optical correlation domain analysis sensor based on a chopped microwave applied single sideband electro-optic modulator." Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013. IEEE, 2013.
    [30] 王楚崴,“以分佈式布里淵光纖感測系統監測碳纖維複材受衝擊後內部損傷之應用”,國立臺灣大學機械工程研究所碩士論文,2012。
    [31] Ghafoori-Shiraz H., and Takanori Okoshi. "Fault location in optical fibers using optical frequency domain reflectometry." Journal of Lightwave Technology 4.3 (1986): 316-322.
    [32] Horiguchi Tsuneo, Toshio Kurashima, and Mitsuhiro Tateda. "Tensile strain dependence of Brillouin frequency shift in silica optical fibers." IEEE Photonics Technology Letters 1.5 (1989): 107-108.
    [33] Horiguchi Tsuneo, and Mitsuhiro Tateda. "BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory." Journal of Lightwave Technology 7.8 (1989): 1170-1176.
    [34] Bao X., David J. Webb, and David A. Jackson. "22 km distributed strain sensor using Brillouin loss in an optical fibre." Optics Communications 104.4-6 (1994): 298-302.
    [35] Kishida Kinzo, Che-Hien Li, and Ken'ichi Nishiguchi. "Pulse pre-pump method for cm-order spatial resolution of BOTDA." 17th International Conference on Optical Fibre Sensors. Vol. 5855. International Society for Optics and Photonics, 2005.
    [36] Mao Y., Guo N., Yu K. L., Tam H. Y., and Lu C."1-cm-spatial-resolution Brillouin optical time-domain analysis based on bright pulse Brillouin gain and complementary code." IEEE Photon. J 4.6 (2012): 2243-2248.
    [37] Diakaridia S., Pan Y., Xu P., Zhou D., Wang B., Teng L., and Dong, Y."Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum." Optics Express 25.15 (2017): 17727-17736.
    [38] Soto M. A., Taki M., Bolognini G., and Pasquale F. D."Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification." IEEE Photonics Technology Letters 24.17 (2012): 1823.
    [39] Dong Yongkang, Liang Chen, and Xiaoyi Bao. "Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs." Journal of Lightwave Technology 30.8 (2012): 1161-1167.
    [40] Peled Yair, Avi Motil, and Moshe Tur. "Fast Brillouin optical time domain analysis for dynamic sensing." Optics Express 20.8 (2012): 8584-8591.
    [41] Li Z., Yan L., Shao L., Pan W., Luo B., Liang J., and He H. "Coherent BOTDA sensor with single-sideband modulated probe light." IEEE Photonics Journal 8.1 (2016): 1-8.
    [42] Erik Diez, ‘‘回歸基本原理:訊號產生的基本概念’’ 電子工程專輯網站,2012.
    [43] Optoplex's C-band Tunable Filter: http://www.optoplex.com/Optical_Tunable_Filter.htm
    [44] Li Z., Yan L., Shao L., Pan W., Luo B., Liang J., and He H."Coherent BOTDA sensor with single-sideband modulated probe light." IEEE Photonics Journal 8.1 (2016): 1-8.
    [45] Nikles Marc, Luc Thevenaz, and Philippe A. Robert. "Brillouin gain spectrum characterization in single-mode optical fibers." Journal of Lightwave Technology 15.10 (1997): 1842-1851.

    QR CODE