簡易檢索 / 詳目顯示

研究生: 王子
Zi Wang
論文名稱: 運用相位靈敏光時域反射儀於光纖震動感測的設計與實現
Design and Implementation of Optical Fiber Vibration Sensing Using Phase-Sensitive Optical Time-Domain Reflectometry
指導教授: 廖顯奎
Shien-Kuei Liaw
宋峻宇
Jiun-Yu Sung
口試委員: 葉建宏
Chien-Hung Yeh
林楚軒
Chu-Hsuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 68
中文關鍵詞: 分佈式光纖感測雷利散射相位靈敏光時域反射儀窄線寬雷射移動平均法
外文關鍵詞: Distributed optical fiber sensing, Rayleigh backscattering, phase-sensitive optical time domain reflectometry, narrow linewidth laser, moving average method
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文初步的建置相位靈敏光時域分析儀,可以作爲分佈式光纖震動感測之應用,對於系統歸納出重要參數,瞭解後續優化的基本方向,透過文獻瞭解雷利散射如何讓發生與時域系統的建立,再經過參數的選取延長感測距離,也對後端的資料處理進行了開發,論文針對模擬震動源和實際震動都做了相關的測試。首先説明了光纖感測的優點,介紹了光於光纖中傳輸產生不同散射其應用的基本架構,介紹了相位靈敏光時域分析儀系統,并詳述此系統如何應用於待測區。
    在論文的中段對於當前的感測系統作初步的介紹,包括各元件以及儀器在此實驗中的功能,同時也對參數做分析,散射光經過光偵測器輸出到數位熒光示波器上,使用Labview從示波器上取出數值,透過Matlab針對模擬震動和真實震動,對數據作移動平均差分或直接差分的訊號處理方式確定震動點,結果通過畫圖和文字的方式直接顯示明顯的震動點位置。最後使用模擬震動源量測1.7km和3.2km的光纖長度,對於真實環境,將4.6km長度光纖中10m光纖懸空,通過後端訊號處理可以準確的確定震動源的位置。


    In this thesis, a phase-sensitive optical time-domain analyzer is initially built, which can be used as the application of distributed optical fiber vibration sensing. The important parameters of the system are summarized, and the basic direction of subsequent optimization is determined. This proposed system used several parameters to extend the sensing distance and then developed the back-end data processing. Firstly, the advantages of optical fiber sensing are explained, and the basic architecture of applying light transmission in optical fibers to produce different scattering was introduced.
    In the middle of the thesis, a preliminary introduction to the current sensing system was made, including the functions of each component and the instrument used in this experiment, and the parameters are also analyzed. The light scattered output goes to the digital phosphor oscilloscope through the light detector, then by using Labview to analyze the value from the oscilloscope, and use Matlab to process the data by moving average difference or direct difference signal processing for simulated vibration and real vibration to determine the vibration position. The result is to directly display the obvious vibration position by graph and text code. Finally, use the simulated vibration source to measure the length of the 1.7km and 3.2km optical fibers. For the real environment, the 10m optical fiber is put off in the 4.6km long optical fiber, and the vibration source position can be determined accurately through back-end signal processing.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3論文架構 3 第二章 光纖感測技術原理與應用 4 2.1光纖感測技術 4 2.1.1逐點式光纖感測技術 5 2.1.2分佈式光纖感測技術 7 2.2光學散射原理與其應用 8 2.2.1雷利散射 9 2.2.2布里淵散射 11 2.2.3拉曼散射 13 2.2.4光學散射應用與比較 15 第三章 相位靈敏光時域反射儀 17 3.1相位靈敏光時域反射儀基本原理 17 3.2 φ-OTDR主要參數分析 21 3.2.1空間解析度 21 3.2.2訊雜比 22 3.2.3感測距離 23 3.2.4雷射漂移對架構影響 25 2.2.5參數分析總結 25 3.3相位靈敏光時域反射儀文獻探討 26 3.3.1雷射線寬 26 3.3.2訊雜比提升 27 3.3.3感測距離 29 第四章 系統架構的建置與參數選擇 31 4.1光學元組件原理與儀器 31 4.1.1光被動元件 32 4.1.2光主動元件 34 4.1.3儀器設備 44 4.2 訊號處理與資料處理模式開發 46 4.2.1直接平均法 46 4.2.2移動平均法 47 4.2.3系統資料處理模式的開發 48 第五章 相位靈敏光時域反射儀感測實驗研究 51 5.1 實驗架構搭建與光路分析 51 5.2實驗結果與分析 53 5.2.1量测1.7km光纖模擬震動 53 5.2.2量測3.2km光纖模擬震動 56 5.2.3量測4.6km光纖真實震動 58 第六章 結論與未來展望 61 6.1結論 61 6.2未來展望 62 參考文獻 63

    [1]K. Kao and G. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proceedings of the Institution of Electrical Engineers, vol. 113, no. 7, pp. 1151-1158, Jan. 1966.
    [2]N. Guo, L. Wang, J. Wang, C. Jin, H.-Y. Tam, P. Zhang and C. Lu, "Bi-directional billouin optical time domain analyzer system for long range distributed sensing," Sensors, vol. 16, no. 12, p. 2156, Dec. 2016.
    [3]K. M. McCary, B. A. Wilson, A. Birri and T. E. Blue, "Response of distributed fiber optic temperature sensors to high-temperature step transients," IEEE Sensors Journal, vol. 18, no. 21, pp. 8755-8761, Nov. 2018.
    [4]Y. Chen, Q. Han, W. Yan, Y. Yao and T. Liu, "Magnetic field and temperature sensing based on a macro-bending fiber structure and an FBG," IEEE Sensors Journal, vol. 16, no. 21, pp. 7659-7662, Nov. 2016.
    [5]L. S. Yan, A. Yi, W. Pan and B. Luo, "A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser," IEEE Photon Technol Lett, vol. 22, no. 18, pp. 1391-1393, Sep. 2010.
    [6]S. M. Nalawade, S. S. Harnol and H. V. Thakur, "Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber," IEEE Sensors Journal, vol. 12, no. 8, pp. 2614-2615, Aug. 2012.
    [7]L. Ma, Y. Qi, Z. Kang and S. Jian, "All-fiber strain and curvature sensor based on no-core fiber," IEEE Sensors Journal, vol. 14, no. 5, pp. 1514-1517, May. 2014.
    [8]X. Jin, C. Sun, S. Duan, W.Liu, G. Li, S. Zhang, X. Chen, L. Zhao, C. Lu, X. Yang, T. Geng, W. Sun and L. Yuan, "High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating," IEEE Photon Journal, vol. 11, no. 1, pp. 1-8, Feb. 2019.
    [9]L. Schenato, Q. Rong, Z. Shao, X. Quiao, A. Pasuto, A. Galtarossa and L. Palmieri," Highly sensitive FBG pressure sensor based on a 3D-printed transducer," IEEE/OSA J. Lightwave Technol, vol. 37, no. 18, pp. 4784-4790, Sept. 2019.
    [10]Y. Gu, Y. Zhao, R. Lv and Y. Yang, "A practical FBG sensor based on a thin-walled cylinder for hydraulic pressure measurement," IEEE Photon Technol Lett, vol. 28, no. 22, pp. 2569-2572, Nov. 2016.
    [11]C. Hong, Y. Zhang and L. Borana, "Design, Fabrication and testing of a 3d printed FBG pressure sensor," IEEE Access, vol. 7, pp. 38577-38583, March. 2019.
    [12]Q. Rong and X. Qiao, "FBG for oil and gas exploration," IEEE/OSA J. Lightwave Technol., vol. 37, no. 11, pp. 2502-2515, June. 2019.
    [13]F. Peng, N. Duan, Y. Rao and J. Li, "Real-time position and speed monitoring of trains using phase-sensitive OTDR," IEEE Photon Technol Lett, vol. 26, no. 20, pp. 2055-2057, Oct. 2014.
    [14]I. Ishida, Z-Y. Wang, S. Tanigawa, S. Matsuo and M. Fujimaki, "Evaluation of structure fluctuation along bending-lossinsensitive hole-assisted fibres by using Bi-directional OTDR measurement," ECOC2010, Torino, Italy, pp. 19-23, Sep. 2010.
    [15]夏朱勇, "建構於布里淵光時域分析法之光纖感測系統:參數量測與優化," 台灣科技大學電子工程研究所碩士論文, 2021年7月
    [16]K. Hill and G. Meltz, "Fiber bragg grating technology fundamentals and overview," IEEE/OSA J. Lightwave. Technol, vol. 15, no. 8, pp. 1263–1276, Aug. 1997.
    [17]Y. Zhang, G. Yan, B. Zhou, E. Lee and S. He, "Reflective optical fiber refractometer based on long-period grating tailored active bragg grating," IEEE Photon Technol Lett, vol. 27, no. 11, pp. 1173-1176, June. 2015.
    [18]Y-P. Wang, L. Xiao, D. N. Wang, and W. Jin, "Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity," Optics Lett, vol. 31, no. 23, p. 3414, Jan. 2006.
    [19]H. Chang, Y. Chang, H. Sheng, M. Fu, W. Liu and R. Kashyap, "An ultra-sensitive liquid-level indicator based on an etched chirped-fiber bragg grating," IEEE Photon Technol Lett, vol. 28, no. 3, pp. 268-271, Feb. 2016.
    [20]王凱民, "光纖光柵讀取機元組件之研製與性能優化," 台灣科技大學電子工程研究所碩士論文, 2019年7月
    [21]G. Allwood, G. Wild, and S. Hinckley, "Optical fiber sensors in physical intrusion detection systems: a review", IEEE Sensors Journal, vol. 16, no. 14, July. 2016.
    [22]R-B. F, M-L. S, C-S. A, C. P, "Distributed brillouin fiber sensor assisted by first-order raman amplification"Journal of lightwave Technol , vol. 28, no. 15, Aug. 2010.
    [23]R.W.Boyd,"Nonlinear optics,"Elsevier,2003.
    [24]Y.Koyamada, M.Imahama, K.Kubota, K.Hogari, "Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR"Journal of lightwave Technol, vol. 27, no. 9, may 1. 2009.
    [25]B. Xiong, X-S. Luo, J. Gu, M-H. Li, F. Wang,and R-R. Dou,"A potdr system based on dual sensing directions" IEEE Photon Journal, Vol 12, no 2, April .2020.
    [26]楊書銘, "布里淵光時域分析法之感測距離及靈敏度優化研究," 台灣科技大學電子工程研究所碩士論文, 2019年7月
    [27]F. Wang, W. Zhan, X. Zhang, Y. Lu, "Improvement of spatial resolution for botdr by iterative subdivision method", Lightwave Technol., vol. 31, pp. 3663-3667, Oct. 2013.
    [28]T. Horiguchi and M. Tateda, "BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using brillouin interaction: theory," IEEE/OSA J. Lightwave. Technol, vol. 7, no. 8, pp. 1170-1176, Aug. 1989.
    [29]M. Imai, R. Nakano, T. Kono, T. Ichinomiya, S. Miura, M. Masahito, "Crack detection application for fiber reinforced concrete using BOCDA-based optical fiber strain sensor", Journal of Structural Engineering, vol. 136, no.8, pp.1001–1008, Jan. 2010.
    [30]A. Smekal,"Zur quantentheorie der dispersion", Naturwissenschaften vol. 11, pp. 873–875, 1923.
    [31]J. Xu, H. Tang, S. Su, J. Liu, H. Han, L. Zhang, K. Xu, Y. Wang, S. Hu, Y. Zhou, and J. Xiang, "Micro-raman spectroscopy study of 32 kinds of chinese coals: second-order raman spectrum and its correlations with coal properties," Energy & Fuels, vol. 31, no. 8, pp. 7884-7893, June. 2017.
    [32]R. S. Das, Y. K. Agrawal, "Raman spectroscopy: recent advancements, techniques and applications," Vibrational Spectroscopy, vol. 57, no. 2, pp. 163-176, Nov. 2011.
    [33]J. Xiang, J. Liu, J. Xu, S. Su, H. Tang, Y. Hu, M. E. Mostafa, K. Xu, Y. Wang,and S. Hu, "The fluorescence interference in raman spectrum of raw coals and its application for evaluating coal property and combustion characteristics", Proceedings of the Combustion Institute, vol. 37, no. 3, pp. 3053-3060, Jan. 2019.
    [34]陳冠宏, "布里淵光時域分析法的研究與建置," 台灣科技大學電子工程研究所碩士論文, 2018年7月
    [35]H. Zhao, "Chapter 6 fuel and mixture composition measurement by raman and rayleigh scattering techniques," Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines , pp.165-197, 2012.
    [36]R. W. Hellwarth, "Theory of stimulated raman scattering", Phys. Rev. 130, pp. 1850, June. 1963.
    [37]N. L. Rowell and G. I. Stegeman, "Theory of Brillouin scattering from opaque media," Phys. Rev. B 18, no. 2, pp. 598, Sep. 1978.
    [38]G. Rajan, "Optical fiber sensors: advanced techniques and applications", CRC Press, Florida, US, 2015.
    [39]C. Aguergaray, A.Runge,M.Erkintalo and N.G.R.Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability", Optics Lett, vol. 38, no. 15, pp. 2644-2646, Aug. 2013.
    [40]M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated brillouin scattering in single-mode fibers", IEEE/OSA J. Lightwave. Technol., vol. 12, no. 4, pp. 585-590, Apr. 1994.
    [41]許安鋒, "同調檢測之相位靈敏光時域反射儀研究與設計," 台灣科技大學電子工程研究所碩士論文, 2021年1月
    [42]X. Wang, P. Zhou, J. Leng, W. Du, Y. Ma, H. Xiao, J. Zhu, X. Dong, X. Xu, Z. Liu, and Y. Zhao, "A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single-frequency laser for coherent beam combining," IEEE Photon Technol. Lett. Vol. 23, no. 14, pp. 980–982, July. 2011.
    [43]Y. Ran, R. Tao, P. Ma, X. Wang, R. Su, P. Zhou, and L. Si, "560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality," Applied. Optics. Vol.54, no.24, pp. 7258–7263, Aug. 2015.
    [44]Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, "Making optical atomic clocks more stable with 10−16-level laser stabilization," Nat. Photon vol. 5,no. 3, pp. 158–161, 2011.
    [45]T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, "A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity," Nat. Photon vol. 6, no.10, pp. 687–692, Sep. 2012.
    [46]H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, "An agile laser with ultra-low frequency noise and high sweep linearity," Opt. Express vol. 18, no. 4, pp. 3284–3297, Feb. 2010.
    [47]K-J.Zhou, Q-L.Zhao,S-H.Xu,"kHz-order linewidth controllable 1550nm single-frequency fiber laser for coherent optical communication,"Opt. Express, vol. 25, no. 17, pp. 19752–19759, Aug. 2017.
    [48]Y. Lu, T. Zhu, L. Chen and X. Bao, "Distributed vibration sensor based on coherent detection of phase-OTDR," IEEE/OSA J. Lightwave. Technol., vol. 28, no. 22, pp. 3243-3249, Nov. 2010.
    [49]Z. Qin,T. Zhu, L. Chen, X-Y. Bao,"High sensitivity distributed vibration sensor basedon polarization-maintaining configurations of phase-OTDR" IEEE Photon Technol. Lett. vol. 23, no. 15, Aug. 2011.
    [50]F. Peng, H. Wu, X-H. Jia, Y-J. Rao, Z-N. Wang, and Z-P. Peng, "Ultra-long high-sensitivity φ-OTDR for high spatial resolution intrusion detection of pipelines,"Optics Express vol. 22, no, 11, pp. 13804-13810, June. 2014.
    [51]Yun. Li, X. Bao, F. Ravet, and E. Ponomarev,"Distributed brillouin sensor system based on offset locking of two distributed feedback lasers,"Applied Optics vol. 47, no. 2, pp. 99-102, Jan. 2008.
    [52]Z-N. Wang, J-J. Zeng, J. Li, M-Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, Y-J. Rao,"Ultra-long phase-sensitive OTDR with hybrid distributed amplification" Optics Lett. vol. 39, no. 20, pp. 5866-5869, Sep. 2014.
    [53]王理恩, "基於背向雷利散射之窄線寬光纖雷射研製及其應用分析," 台灣科技大學電子工程研究所碩士論文, 2021年7月

    無法下載圖示 全文公開日期 2027/06/15 (校內網路)
    全文公開日期 2027/06/15 (校外網路)
    全文公開日期 2027/06/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE