簡易檢索 / 詳目顯示

研究生: 李承軒
Cheng-Hsuan Lee
論文名稱: 基於受激布里淵散射效應之分佈式光纖感測系統性能優化
Performance Improvement of Distributed Fiber Sensing System Based on Stimulated Brillouin Scattering Effect
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 李三良
San-Liang Lee
馮開明
Kai-Ming Feng
沈育霖
Yu-Lin Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 103
中文關鍵詞: 受激布里淵散射效應分佈式光纖感測光纖光柵應力感測
外文關鍵詞: Stimulated Brillouin scattering (SBS), Distributed fiber sensing, fiber Bragg grating, strain sensing
相關次數: 點閱:222下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在優化一布里淵散射效應之分佈式光纖感測系統,主要優化項目包括空間解析度、量測距離、應力感測靈敏度與線性度。首先介紹分佈式光纖感測系統量測原理並定義重要參數,透過選取訊號調變強度,以及分析探測光強度與極化狀態之間的影響來改善空間解析度。在調變強度範圍100 mV至2000 mV中,發現1000 mV能使光源有最寬的3-dB頻寬為2.2 GHz與較高的光源功率-26.62 dBm,故找出1000 mV為較佳調變強度。利用光衰減器設置衰減值0 dB至4 dB,受極化影響的平均功率變動會由0.3575 ppm降低至0.2727 ppm,且發現在1 dB與2 dB時有較好的空間解析度,故選擇衰減2 dB使探測光達到較佳強度。接下來介紹實驗室自製可調式布拉格光纖光柵,探討其對系統探測光調制成單邊頻帶之效果與特性較佳光柵選取,並藉由光纖光柵同時具有反射特定波長並穿透其它波長的特性,設計出穿透型與反射型兩種調制架構。穿透型架構能夠使高頻旁帶與低頻旁帶光功率差達到4.65 dB,且相較於調制前之總功率損耗為0.6 dB;反射型架構能夠使高頻旁帶與低頻旁帶光功率差達到24.07 dB,而相較於調制前之總功率損耗為1.96 dB,故穿透型調制架構具有損耗較低的優勢,而反射型調制架構具有單邊頻帶調制效果較佳的優勢。最後將單邊頻帶調制架構應用於系統量測,利用原始架構量測53公尺距離並無法完整量測;加入穿透型調制後能成功量測到66公尺並有50公分空間解析度;加入反射型調制後能成功量測53公尺並有30公分空間解析度,但量測66公尺時因反射型架構衰減較多造成空間解析度較差。在光纖應力感測部分,給予軸向應力0 με至4500 με,每100 με紀錄一次,無單邊頻帶調制架構之靈敏度為2.617 MH/100με,線性度R^2為0.9436;加入穿透型調制之靈敏度提升為2.651 MH/100με,線性度R^2提升為0.954;加入反射型調制之靈敏度提升為2.777 MH/100με,線性度R^2提升為0.9599。


    The aim of this thesis is to improve a distributed fiber sensing system based on Stimulated Brillouin scattering (SBS) effect. The improved characteristics consisted of the spatial resolution, sensing range, sensitivity, and linearity. First, the measuring principle was introduced and important parameters of distributed fiber sensing system were defined. The spatial resolution was affected by modulation amplitude, power intensity and polarization state of the laser. From 100 mV to 2000 mV modulation amplitude, we found that the widest 3-dB bandwidth of 2.2 GHz, and higher optical power of -26.63 dBm could be obtained when the modulation amplitude was set 1000 mV. As the attenuation value was increased from 0 to 4 dB, the polarization-dependent power variation decreased from 0.3573 ppm to 0.2727 ppm. We also find that attenuation value of 1 to 2 dB may result in better spatial resolution. Therefore, attenuation value of 2 dB was selected in this study. Then, the homemade tunable fiber Bragg grating using for obtaining single sideband modulation (SSB) was discussed. The transmission type (T-type) and reflection type (R-type) setups for SSB were designed and investigated. The difference of optical power between the upper sideband (USB) and lower sideband (LSB) was 4.65 dB by using T-type setup, and the difference may even increase to 24.07 dB by using R-type setup, respectively. The total power loss was 0.6 dB by using T-type setup and 1.96 dB by R-type setup, respectively. Therefore, T-type setup has lower loss while R-type setup has the advantage of better SSB modulation. Finally, two types of SSB modulation approaches were applied to system sensing measurement. We successfully achieved a fiber span of 66 m with 50 cm spatial resolution based on T-type setup, and a fiber span of 53 m with 30 cm spatial resolution based on R-type setup. For strain sensing, the strain was increased from 0 με to 4500 με in step of 100με. By using original setup with double sideband, the sensitivity and the linearity R^2 were 2.617 MH/100με and 0.9436, respectively. By using T-type setup, the sensitivity and the linearity R^2 were improved to 2.651 MH/100με and 0.954, respectively. By using R-type setup, the sensitivity and the linearity R^2 were improved to 2.777 MH/100με and 0.9599, respectively.

    摘要 I Abstract II 致謝 IV 目錄 V 圖表索引 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 論文架構 4 第二章 分佈式光纖感測原理與文獻探討 5 2.1 光纖感測技術 5 2.1.1 單點式光纖感測器 5 2.1.2 分佈式光纖感測器 6 2.2 光纖散射原理 10 2.2.1 自發性散射 10 2.2.2 自發性布里淵散射 11 2.2.3 激發性布里淵散射 12 2.3 BOCDA系統介紹 13 2.3.1 BOCDA架構與基本原理 13 2.3.2 BOCDA重要參數分析 15 2.4 BOCDA系統架構優化技術 18 2.4.1 空間解析度優化方法 18 2.4.2 動態量測速度提升方法 21 2.4.3 量測距離提升方法 22 2.4.4 文獻整理 24 第三章 分佈式光纖感測架構與參數優化 25 3.1 架構元組件原理與介紹 25 3.1.1 光纖被動元件 25 3.1.2 分佈式回授雷射二極體(Distributed Feedback Laser Diode) 27 3.1.3 摻鉺光纖放大器(Erbium-doped Fiber Amplifier) 28 3.1.4 電光調變器(Electro-optic modulator) 29 3.1.5 光衰減器(Optical attenuator) 30 3.1.6 極化控制器(Polarization controller) 30 3.1.7 Fiber Fabry-Perot 可調式濾波器 31 3.1.8 鎖相放大器(Lock-in amplifier) 32 3.2 系統參數選取與優化 33 3.2.1 調變強度優化 33 3.2.2 探測光強度對極化穩定度影響分析 39 3.3 本章結論 47 第四章 布拉格光纖光柵單邊頻帶調制 48 4.1 可調式布拉格光纖光柵製作與介紹 48 4.1.1 布拉格光纖光柵理論分析 48 4.1.2 光纖光柵製作方法 50 4.1.3 碳纖維複合材料 54 4.1.4 可調式光纖光柵特性量測與選取 56 4.2 光纖光柵單邊頻帶調制 59 4.2.1 單邊頻帶調制法-穿透型架構 59 4.2.2 單邊頻帶調制法-反射型架構 61 4.2.3 調制結果比較與探討 62 4.3 本章結論 64 第五章 單邊頻帶調制BOCDA系統量測 65 5.1 待測距離與空間解析度量測 65 5.1.1 無單邊頻帶調制量測 65 5.1.2 穿透型單邊頻帶調制量測 67 5.1.3 反射型單邊頻帶調制量測 71 5.2 應力感測實驗 75 5.2.1 實驗架設與量測方法 75 5.2.2 無單邊頻帶調制BOCDA應力感測實驗 76 5.2.3 穿透型單邊頻帶調制BOCDA應力感測實驗 81 5.2.4 反射型單邊頻帶調制BOCDA應力感測實驗 86 5.3 本章結論 91 第六章 結論與未來展望 93 6.1 結論 93 6.2 未來展望 94 參考文獻 98

    [1] A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror,” IEEE/OSA Journal of Lightwave Technology, vol. 30, no. 8, pp. 1168-1172, 2012.
    [2] 張家瑞、林鶴斯、黃心華,“地下管線管理瓶頸與未來整體改善策略”,財團法人國家政策研究基金會,9月,2014年。
    [3] K. Hotate, T. Hasegawa, “Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber using a Correlation-Based Technique--Proposal, Experiment and Simulation,” The Institute of Electronics, Information and Communication Engineers TRANSACTIONS on Electronics, vol. E83-C, no.3, pp.405-412, 2000.
    [4] 賴郁竹,“多參數光纖光柵液體感測研製”,國立臺灣科技大學電子工程研究所碩士論文, 2015。
    [5] 蕭文皓,“交通安全感測網路之光開關設計及參數量測”,國立臺灣科技大學電子工程研究所碩士論文,2015。
    [6] K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," IEEE Proceedings of the Institution of Electrical Engineers, vol. 113, pp. 1151-1158, July, 1966.
    [7] I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Applied Physics Letters, vol. 17, pp. 109-111, 1970.
    [8] 張國鎮,“光纖感測監測之應用與發展”,國家地震工程研究中心,2001。
    [9] 葉天傑,“外力式長週期與傳統式短週期光纖光柵的特性分析及實驗量測”,國立臺灣大學機械工程研究所碩士論文,2002。
    [10] Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring,” IEEE Photonics Journal, vol. 4, no. 3, pp. 996-1002, 2012.
    [11] K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, no. 10, pp. 1035-1037, 1993.
    [12] 高雪松,“光纖光柵在光通信領域中的應用”,2005。
    [13] K. O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, pp. 1263-1276, 1997.
    [14] B. Shi, H. Sui, J. Liu and D. Zhang, “The BOTDR-based distributed monitoring system for slope engineering”, 10th Congress of the International Association for Engineering Geology and the Environment, no. 693, pp. 1-5, 2006.
    [15] X. F. Zhang, W. J. Hao, Q. Zhang, X. W. Meng, and Y. W. Han, “Development of optical fiber strain monitoring system based on BOTDR,” IEEE 10th International Conference on Electronic Measurement and Instruments, pp.38-41, 2011.
    [16] 沈育霖,“光纖分布式感測技術於結構安全監測之多功應用研究”,國立臺灣大學應用力學研究所博士論文,2010。
    [17] H. Naruse and M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” OSA Applied Optics, vol. 38, no.31, pp. 6516-6524, 1999.
    [18] K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technology Letters, vol.14, no. 2, pp. 179-181, 2002.
    [19] K. Hotate and S. S. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 272-274, 2003.
    [20] K. Y. Song, Z. He, and K. Hotate, "Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme," OSA Optics Express, vol. 14 , no. 10, pp. 4256-4263, 2006.
    [21] K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photonics Technology Letters, vol. 18, no. 3, pp. 499-501, 2006.
    [22] R. W. Boyd, “Nonlinear Optics,” Elsevier, 2003.
    [23] G. P. Agrawal, “Nonlinear fiber optics,” Academic Press, USA, 2001.
    [24] 蔣博文,“利用自發性布里淵散射技術之分佈型應變與溫度感測”,國立交通大學光電工程研究所碩士論文,2001。
    [25] F. T. Arecchi and E. O. Schulz-Dubois, Laser Handbook, vol. 2, pp. 1077-1150, 1972.
    [26] T. Yamauchi and K. Hotate, “Performance evaluation of Brillouin optical correlation domain analysis for fiber optic distributed strain sensing by numerical simulation,” SPIE Proceedings of Optics East. International Society for Optics and Photonics, vol. 5589, pp.164-174, 2004.
    [27] T. Horiguchi, T. Kurashima and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technology Letters, vol. 1, no. 5, pp. 107-108, 1989.
    [28] T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects on Brillouin frequency shift in jacketed optical silica fibers,” OSA Applied Optics, vol. 29, no. 15, pp. 2219-2222, 1990.
    [29] W. Zou, X. Long, and J. Chen, “Brillouin Scattering in Optical Fibers and Its Application to Distributed Sensors,” Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, 2015.
    [30] 徐進鴻,“以極化差異法與PXI平台改善分佈式布里淵光纖感測系統”,國立臺灣大學應用力學研究所碩士論文,2010。
    [31] 李妤翎,“分布式布里淵光纖感測系統於裂縫監測之應用”,國立臺灣大學應用力學研究所碩士論文,2009。
    [32] 楊仕偉,“以內埋式光纖光柵感測器監測碳纖維複合材料衝擊及疲勞破壞之應用”,國立臺灣大學機械工程研究所碩士論文,2009。
    [33] J. H. Jeong, K. Lee, K. Y. Song, J. H. Lee, “Simplified Brillouin optical correlation domain analysis sensor based on a chopped microwave applied single sideband electro-optic modulator,” IEEE Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, pp. 1-3, 2013.
    [34] 王楚崴,“以分佈式布里淵光纖感測系統監測碳纖維複材受衝擊後內部損傷之應用”, 國立臺灣大學機械工程研究所碩士論文,2012。
    [35] K. Hotate, R. Watanabe, Z. He and M. Kishi, “Measurement of Brillouin frequency shift distribution in PLC by Brillouin Optical Correlation Domain Analysis,” 22nd International Conference on Optical Fiber Sensor, 2012.
    [36] R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technology Letters, vol. 26, no. 5, pp. 473-476, 2014.
    [37] Y. London, Y. Antman, M. Silbiger, L. Efraim, A. Froochzad, G. Adler, E. Levenberg, and A. Zadok, “High-resolution Brillouin analysis of composite materials beams,” 24th International Conference on Optical Fibre Sensors, 2015.
    [38] K. Washiyama, M. Kishi, Z. He, K. Hotate, “High Speed BOCDA Measurement of Strain Distribution by Longitudinal Sweep Method,” Progress in Optical Sensing and Environmental Monitoring, 2013.
    [39] C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Applied Physics Express, vol. 8, no. 4, 2015.
    [40] Y. H. Kim, K. Lee, K. Y. Song, “Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement,” OSA Optics Express, vol. 23, no. 26, pp. 33241-33248, 2015.
    [41] C. Zhang, M. Kishi, and K. Hotate, “Enlargement of measurement range in Brillouin optical correlation domain analysis with high-speed random accessibility using temporal gating scheme for multiple-points dynamic strain measurement,” 24th International Conference on Optical Fibre Sensors, 2015.
    [42] Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation,” IEEE Journal of Lightwave Technology, vol. 28, no. 22, pp. 3300-3306, 2010.
    [43] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. 9, pp. 919-933, 1973.
    [44] 畢衛紅、張闖,“光纖Bragg光柵的反射特性研究”,中國科技論文在線,第22期,第8卷,2003。
    [45] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg grating in optical fibers by transverse holographic method,” OSA Optics Letters, vol.14, no.15, pp.823-825, 1989.
    [46] 陳宣臣,“波長可調光纖光柵之研製與應用”,國立臺灣科技大學電子工程研究所碩士論文,2004。
    [47] 劉學政,“光纖光柵研製及其於光網路模組之應用”,國立臺灣科技大學電子工程研究所碩士論文,2002。
    [48] 張銘宏,“兼具增益之可重構光信號塞取多工器”,國立臺灣灣科技大學電子工程研究所碩士論文,2005。
    [49] R. Kashyap, “Fiber Bragg gratings,” Academic Press, USA, 1999.
    [50] K. Hotate, and K. Abe, “BOCDA fiber optic distributed strain sensing system with a polarization diversity scheme for enlargement of measurement range,” 17th International Conference on Optical Fibre Sensors, 2005.

    QR CODE