簡易檢索 / 詳目顯示

研究生: 楊書銘
Shu-Ming Yang
論文名稱: 布里淵光時域分析法之感測距離及靈敏度優化研究
Study on Distance and Sensitivity Optimization of Brillouin Optical Time Domain Analyses
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 呂海涵
Hai-Han Lu
廖顯奎
Shien-Kuei Liaw
葉秉慧
Bing-Huei Ye
廖啟雯
Ci-Wun Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: 布里淵光時域分析系統時域分析光纖光柵
外文關鍵詞: Brillouin optical time domain analysis system, time domain analysis, fiber grating
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要實踐布里淵光時域分析系統,對布里淵光時域分析系統歸納出系統重要參數,了解系統優化的實行方向。透過文獻的參考瞭解布里淵散射如何發生及時域系統建立的關鍵,再經由參數的選取達到感測距離及靈敏度優化研究,也對系統後端的資料處理進行了開發,本論文也針對溫度對布里淵頻率飄移的影響和布里淵光時域分析系統結合光纖光柵,進行了研究分析和系統設計。首先說明光纖感測的優點,也說明分佈式光纖感測與布里淵光學的發展與重要性,介紹不同的光纖感測原理與方法和光於光纖中不同的散射作用與應用,介紹布里淵光學時域系統,並詳述此系統如何應用於待測區。對系統架構做初步介紹
    在中段將逐步分析如何解讀光訊號與電訊號代表的意義,並以原理和實驗探討最佳的基本參數,如: 泵激光與探測光強度比例、布里淵增益頻譜,對布里淵散射系統脈衝寬度對布里淵增益頻譜的影響,也對可調式濾波器的濾波的波長,進行了研究分析,建立系統操作流程,並以Matlab來做為數據讀取的應用軟體,直接將存取到的數據匯入Matlab進行繪圖,同時藉由程式碼的編寫並建立一套流程,實驗結果更快速獲得,並匯入參考數據(無擾動之單模光纖)和量測數據(有擾動之單模光纖)進行運算,讓結果同時顯示量測數據圖和擾動發生位置。
    最後嘗試拉長測量距離、縮短不規則區以此提高空間解析度,最後得到了3.6km、5.6km、10km、15km的長度量測,且得到15km SMF / 4m DSF的空間解析度。並觀察溫度對布里淵頻率飄移趨勢和布里淵光時域分析系統結合光纖光柵,進行了研究分析和系統設計。


    This paper studies the Brillouin optical time domain analysis system, sums up the important parameters of the system in the Brillouin optical time domain analysis system, and understands the direction of system optimization. Through the reference of the literature, we can understand how the Brillouin scattering occurs in the time domain system, and select the parameters to achieve the sensing distance and sensitivity optimization. The data processing of the system backend is also developed. This paper also studies and analyzes the influence of temperature on Brillouin frequency shift and Brillouin optical time domain analysis system combined with fiber grating. Firstly, the development and importance of distributed fiber sensing and Brillouin optics are also introduced. Different fiber sensing principles and methods and different scattering effects and applications in optical fibers are introduced.
    In the middle section, we will gradually analyze how to interpret the meaning of optical signals and electrical signals, and explore the best basic parameters by principle and experiment, such as: the ratio of pump light intensity between probe light intensity, Brillouin gain spectrum, Brillouin scattering system, the effect of pulse width on the Brillouin gain spectrum, and the filtering wavelength of the tunable filter are studied and analyzed. The system operation flow is established, and Matlab is used as the application software for data reading. The data is imported into Matlab for drawing, and by programming the code and establishing a set of processes, the experimental results are obtained more quickly, and the reference data (undisturbed single-mode fiber) and measurement data (disturbed single mode) are imported. The fiber is operated to allow the result to simultaneously display the measured data map and the location of the disturbance.
    This paper attempts to lengthen the measurement distance and shorten the irregular area to improve the spatial resolution. Finally, the length measurements of 3.6km, 5.6km, 10km and 15km are obtained, and the spatial resolution of 15km SMF / 4m DSF is obtained. The influence of temperature on Brillouin frequency shift and Brillouin optical time domain analysis system combined with fiber grating were carried out to study and analyze the system design.

    摘要 1 Abstract 2 第一章 緒論 10 1.1前言 10 1.2研究動機 11 1.3論文架構 12 第二章 分佈式光學感測原理 13 2.1光學散射原理 13 2.1.1彈性散射 14 2.1.2拉曼散射 15 2.1.3布里淵散射 16 2.2光學散射的應用與比較 19 2.3光纖感測技術 20 2.3.1單點式光纖感測 22 2.3.2分佈式光纖感測 24 2.4基於布里淵光學的分佈式感測 26 2.4.1布里淵光時域反射儀(BOTDR) 28 2.4.2布里淵相關域分析系統(BOCDA) 28 2.4.3布里淵光學頻域分析系統(BOFDA) 29 2.4.4布里淵光時域分析系統(BOTDA) 30 第三章 布里淵光時域分析系統架構 32 3.1 布里淵光時域分析系統文獻探討 32 3.1.1 空間解析度 33 3.1.2 量測距離 35 3.1.3 布里淵增益 36 3.1.4同調性處理 37 3.1.5文獻整理 38 3.2元組件原理與介紹 39 3.2.1光隔離器 40 3.2.2光耦合器 41 3.2.3分佈式回授雷射二極體(DFB-LD) 41 3.2.4電光調變器(Eletro-optics Modulator) 42 3.2.5脈衝模式產生器(Pulse pattern Generator) 43 3.2.6訊號產生器(SG) 44 3.2.7摻鉺光纖放大器(EDFA) 45 3.2.8 FFP-TF 46 3.2.9光接收器(PD) 47 3.2.10實時示波器(RTO) 49 第四章 布里淵光時域分析系統參數選取 50 4.1參數選取 50 4.1.1探測光與泵激光載入訊號 50 4.1.2 泵激光與探測光強度比例 52 4.1.3 脈衝寬度 55 4.1.4 濾波器通道選擇 56 4.2布里淵增益頻譜 58 4.3布里淵光時域分析系統操作流程 62 4.4布里淵光時域分析系統資料處理模式開發 64 第五章 布里淵光時域分析系統量測與分析 68 5.1布里淵光時域分析系統待測區長度量測 70 5.1.1量測3.6km單模光纖 70 5.1.2量測5.6km單模光纖 72 5.1.3量測10km單模光纖 73 5.1.4量測15km單模光纖 75 5.2空間解析度量測 76 5.2.1 15km單模光纖和4m色散移位光纖 76 5.3布里淵光時域分析系統溫度量測實驗 81 5.3.1量測方法 81 5.3.2溫度對布里淵頻率飄移趨勢 82 5.4布里淵光時域分析系統結合光纖光柵 83 5.4.1布里淵光時域分析系統結合光纖光柵之架構 83 5.4.2布里淵光時域分析系統結合光纖光柵量測 85 第六章 結論與未來展望 88 6.1結論 88 6.2未來展望 89 第七章 參考文獻 91

    [1] Agrawal G. Applications of Nonlinear Fiber Optics. San Diego: Academic Press, 2010.
    [2] A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, "Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror," IEEE/OSA Journal of Lightwave Technology, vol. 30, no. 8, pp. 1168-1172, 2012.
    [3] C. Zhang, M. Kishi, and K. Hotate, “Enlargement of measurement range in Brillouin optical correlation domain analysis with high-speed random accessibility using temporal gating scheme for multiple-points dynamic strain measurement,” 24th International Conference on Optical Fibre Sensors, 2015.
    [4] A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, "Temperature fiber laser sensor based on a hybrid cavity and a random mirror," IEEE/OSA Journal of Lightwave Technology, vol. 30, no. 8, pp. 1168-1172, 2012.
    [5] T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” IEEE Lightwave Technonlogy, vol.7, no. 8, pp. 1170 - 1176, 1989.
    [6] X. Bao, D. J. Webb and D. A. Jackson, “22 km distributed strain sensor using Brillouinlossin an optical fiber, Simultaneously Two-Parameter Measurement Using Tilted Fiber Grating and Long Period Fiber Grating Optics Communications, vol. 2, no. 4, p298-302, 1994.
    [7] R. W. Boyd, “Nonlinear Optics,” Elsevier, 2003.
    [8] K. Hotate, T. Hasegawa, “Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber using a Correlation-Based Technique--Proposal, Experiment and Simulation,” The Institute of Electronics, Information and Communication Engineers TRANSACTIONS on Electronics, vol. 5, no.3, pp. 405-412, 2000.
    [9] 周真,苑惠娟.感測器原理與應用.清華大學出版社,,2011.07。
    [10] Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring,” IEEEPhotonics Journal, vol. 4, no. 3, pp. 996-1002, 2012.
    [11] 高雪松,”光纖光柵在光通信領域中的應用”,2005。
    [12] 陳柏偉,“液體多參數感測之元組件開發與系統量測”,台灣科技大學電子工程研究所碩士論文,2016
    [13] K.O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, no. 10, pp. 1035-1037, 1993
    [14] M. K. Barnoski and S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Applied Optics, Volume 15, Issue 9, pp.2112-2115, 1976
    [15] A. J. Rogers, “Distributed optical-fiber sensors,” Journal of Physics D: Apply Physics, Volume 19, pp.2237-2255, 1986.
    [16] D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensor,” Electronics Letters, Volume 25, Issue 14, pp.913-915, 1989.
    [17] T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Optics Letters, Volume 15, Issue 18, pp.1038-1040, 1990.
    [18] T. Horiguchi, T. Kurashima, and Y. Koyamada, “1 m spatial resolution measurement of distributed Brillouin frequency shift in signle-mode fibers,” in Tech. Dig. Symp. Opt. Fiber Meas., NIST special Publication 864, pp.73-76, 1994.
    [19] M. Nickles, L. Thevenaz, and P. A. Robert, “Measurement of the distributed-Brillouin-gianspecturem in optical fibers by using a single-laser source,” in Tech. Dig., OFC 1994, paper WF1, pp.89-90, 1994.
    [20] X. Bao, A. Brown, M. De Merchant and J. Smith, "Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses", Optics Letters, Volume 24, Issue 8, pp.510-512, 1999.
    [21] V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in highresolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Optics Letters, Volume 25, pp.156-158, 2000.
    [22] L. Zou, X. Bao, Y. Wan, and L. Chen, “Coherent probe-pump-based Brillouin sensor for centimetre-crack detection,” Optics Letters, Volume 15, pp.370-372, 2005.
    [23] A. W. Brown and B. G. Colpitts, “Dark-Pulse Brillouin optical Time-Domain Sensor with 20-mm Spatial Resolution,” Journal of Lightwave Technology, Volume 25, Issue 1, pp.381-386, 2007.
    [24] M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” OPTICS LETTERS, Volume 36, Issue 2, pp.277-279, 2011.
    [25] L. Thévenaz, “Brillouin Distributed Time-Domain Sensing in Optical Fibers: State of the Art and Perspective,” Frontiers of Optoelectronics in China, Volume 3, Issue 1, pp.13-21, 2010
    [26] K. Hotate, T. Hasegawa, “Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber using a Correlation-Based Technique--Proposal, Experiment and Simulation,” The Institute of Electronics, Information and Communication Engineers TRANSACTIONS on Electronics, vol. 5, no.3, pp. 405-412, 2000.
    [27] K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry,” Optics Letters, Volume 20, Issue 5, pp.507-509, 1995.
    [28] C. Zhang, M. Kishi, and K. Hotate, “Enlargement of measurement range in Brillouin optical correlation domain analysis with high-speed random accessibility using temporal gating scheme for multiple-points dynamic strain measurement,” 24th International Conference on Optical Fibre Sensors, 2015.
    [29] H. G. Shiraz and T. Okashi, “Fault Location in Optical Fibers Using Optical Frequency Domain Reflectometry,” Journal of Lightwave Technology, Volume LT-4, Issue 3, pp.316-322, 1986.
    [30] Avi Motil, Arik Bergman, Moshe Tur “State of the art of Brillouin fiber-optic distributed sensing” Optics &LaserTechnology78(2016)81–103.
    [31] Horiguchi, T.; Kurashima, T.; Tateda, M. "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photonics Technology Letters, 1, 107-108(1989).
    [32] Kurashima, T.; Horiguchi, T.; Tateda, M. "Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers," Optics Letters, 15, 1038-1040(1990).
    [33] T. Horiguchi and M. Tateda, “BOTDA-Nondestructive Measurement of Single-Mode Optical Fiber Attenuation Characteristics Using Brillouin Interaction: Theory,” IEEE LightwaveTechnonlogy, vol.7, no. 8,1989.
    [34] Xiaoyi Bao, Liang Chen, “High performance BOTDA for long range sensing,” Proc. SPIE 7982, Smart Sensor Phenomena, Technology, Networks, and Systems 2011, 798206 (15 April 2011)
    [35] Y. Mao, N. Guo, K. L. Yu, H. Y. Tam and C. Lu, “1-cm-Spatial-Resolution Brillouin Optical Time-Domain Analysis Based on Bright Pulse Brillouin Gain and Complementary Code,” IEEE Photonics Technology Letters, vol.4, no. 6, pp. 146-153, 2012.
    [36] Sanogo Diakarida, Yue Pan, Pengbai Xu, Dengwang Zhou, Benzhang Wang, Lei Teng, Zhiwei Lu, Dexin Ba and Yongkang Dong, ‘‘Detecting cm-scale hot spot over 24-km-long-single-mode fiber by using differential pulse pair BOTDA based on diuble-peak spectrum’’ OPTICS EXPRESS, Vol.25, no.15, pp.17727, 2017
    [37] M. A. Soto,T. Mohammad, G. Bolognini and D. Fabrizio, “Simplex-Coded BOTDA Sensor Over 120-km SMF With 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification,” IEEE Photonics Technology Letters, vol.24, no. 20, pp. 1823-1826, 2011.
    [38] Nageswara Lalam, Wai Pang Ng, Xuewu Dai, “Employing Wavelength Diversity Technique The Brillouin Gain Response In BOTDA System,” OSA Technical Digest (online) (Optical Society of America, 2016), paper M2D.4
    [39] Zonglei Li, Lianshan Yan, Liyang Shao, Wei Pan, Bin Luo, Jiawei Liang, Haijun He, ‘‘Coherent BOTDA Sensor With Single-Sideband Modulated Probe Light,’’ IEEE Photonics Journal, Vol.8, No.1, pp.1943-0655, February 2016
    [40] Optoplex's C-band Tunable Filter: http://www.optoplex.com/Optical_Tunable_Filter.htm
    [41] GinuRajan,“Optical Fiber Sensors: Advanced Techniques and Applications”
    [42] M. Nikles, L. Thevenaz and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,”IEEE Journal ofLightwave Technology, vol.15, no.10, pp. 1842-1851, 1997.
    [43] A. Othonos, K. Kalli,“Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing,”Artech House Optoelectronics Library, 1999

    無法下載圖示 全文公開日期 2024/08/22 (校內網路)
    全文公開日期 2024/08/22 (校外網路)
    全文公開日期 2024/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE