簡易檢索 / 詳目顯示

研究生: 劉俊佑
CHUN-YU-LIU
論文名稱: 數位控制同步整流式LLC諧振轉換器之設計與研製
Research and Implementation of a Digitally-controlled Synchronous-Rectified LLC Resonant Converter
指導教授: 劉益華
Yi-Hua Liu
口試委員: 羅有綱
Yu-Kang Lo
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 115
中文關鍵詞: 功率因數修正串聯諧振轉換器零電壓切換同步整流
外文關鍵詞: zero voltage switching, digital control, power factor corrector, LLC resonant converter, synchronous rectification
相關次數: 點閱:147下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高效率以及高功率密度已成為現今電源供應器設計不可或缺的一環,為了達成這一目的,應採用柔切技術(包括零電壓切換與零電流切換),柔切能使電源轉換器同時達到高切換頻率與低切換損失。在眾多柔切換技術之中,半橋串聯諧振轉換器因具備高效率、低切換諧波、寬範圍輸入以及能達到高功率密度等特色,逐漸受到使用者的喜愛,若使用同步整流電路取代傳統全波整流,效率還能更進一步的提升。
    本論文主要研製一350W輸出之電源供應器,整體架構包含兩個部分,前級的部分使用平均電流模式控制之功率因數修正器,藉此改善功率因數且減少輸入電流的諧波失真。後級利用Microchip開發的數位處理器dsPIC33FJ16GS502來實現LLC諧振轉換器的變頻控制,本論文亦以數位方式完成LLC諧振轉換器之同步整流驅動。根據實驗結果,功率因數修正器之轉換效率高於92%,功率因數高於0.96,數位同步整流LLC諧振轉換器可以實現效率高於90%之目標。


    High efficiency and high power density have become a necessity in modern-day power-supply designs and their applications. To achieve such goals, soft switching techniques (including zero voltage switching and zero current switching) which allow the power converters to achieve both higher switching frequencies and lower switching losses should be adopted. Among soft switching power converters, the popularity of the LLC resonant converter is increasing because their several desired features such as high efficiency, low switching noise, wide input voltage range and ability to achieve high power density. By replacing the traditional full-wave rectifier with a synchronous rectifier circuit, the efficiency can further be improved.
    The main purpose of this thesis is to research and implement a 350W power supply. The whole system configuration can be divided into two major parts. An average current mode controlled power factor corrector (PFC) in front stage is used as a regulator for improving the input power factor and reducing the total harmonic distortion. dsPIC33FJ16GS502 from Microchip corp. is used as the digital variable frequency controller of the LLC resonant converter. A digital implementation of synchronous rectification driving scheme for LLC resonant converter is also presented in this thesis. According to the experimental results, the PFC circuits can achieve efficiency higher than 92% and a power factor higher than 96%. The digitally-controlled LLC resonant converter with synchronous rectifier can achieve efficiency higher than 90%.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章緒論 1 1.1 研究背景與動機 1 1.2 數位電源之特色 1 1.3 論文大綱 2 第二章 主動式功率因數修正器之原理 4 2.1 功率因數與諧波失真之定義 4 2.2 升壓型功率因數修正器 7 2.3 主動式功率因數修正器之操作模式介紹 9 2.4 功率因數修正器之控制模式介紹 11 2.4.1電壓隨耦控制法(Voltage-Follower Control) 11 2.4.2 峰值電流控制法(Peak Current Control) 12 2.4.3 磁滯電流控制法(Hysteresis Current Control) 14 2.4.4 平均電流控制法(Average Current Control) 16 第三章 LLC諧振轉換器硬體架構 20 3.1 理想RLC串聯諧振電路分析 21 3.2 半橋式串聯諧振轉換器簡介 23 3.3 LLC諧振轉換器頻率響應分析 24 3.4 LLC諧振轉換器操作模式分析 32 3.4.1 SRC電路操作模式分析 32 3.4.2 LLC-SRC 之電路操作模式分析 46 3.4.3 SRC及 LLC-SRC 之比較 55 3.5 LLC諧振轉換器同步整流技術 56 3.5.1 同步整流控制訊號考量 57 第四章 硬體電路規格制定與設計 60 4.1升壓式功率因數修正器電路設計 60 4.1.1 UCC28019 IC簡介 60 4.1.2 電路規格制定 61 4.1.3 電路元件之設計與選用 62 4.2 LLC諧振轉換器電路設計 64 4.2.1電路規格制定 65 4.2.2電路元件參數之設計與選用 65 第五章 數位控制器設計 73 5.1 前言 73 5.2 dsPIC33FJ16GS502簡介 74 5.3 數位LLC諧振轉換器韌體設計流程 75 5.3.1數位LLC諧振轉換器韌體設計流程 75 5.4 數位濾波器設計 78 5.4.1濾波器簡介 78 5.4.2有限脈衝響應濾波器設計 80 5.4.3 FIR濾波器設計 81 5.4.4 FIR數位濾波器驗證 85 5.5 數位PID 86 5.5.1 PID控制器原理 86 5.5.2數位PID控制器 88 第六章實驗結果與討論 92 6.1 升壓式功率因數修正器實測結果: 92 實驗測試儀器及設備 92 實驗波形量測 92 6.2數位控制型LLC串聯諧振轉換器實測結果: 100 實驗測試儀器及設備 100 實驗波形量測 100 同步整流LLC諧振轉換器實體電路圖 : 108 第七章 結論與未來展望 109 7.1 結論 109 7.2未來展望 110 參考文獻 111

    [1] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 267-273, May. 1993.
    [2] C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-206, 2001.
    [3] R. Srinivasan, and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. Power Electronics, vol. 13, no. 3, pp. 487-499, 1998.
    [4] L. H. Dixon, “High power factor pre-regulators for off-line power supplies,” Unitrode Application Note, TOPIC6, pp. 1-16.
    [5] L. H. Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U-140, pp. 356-369.
    [6] L.H. Dixon, “High power factor pre-regulation design optimization,” Unitrode Application Note, TOPIC7, pp. 1-12.
    [7] S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with improved input power factor and high power density,” IEEE Trans. Industrial Electronics, vol. IA-22, no. 6, pp. 1073-1081, 1986.
    [8] Woo-Young Choi and Bong-Hwan Kwon, “An efficient power factor correction scheme for plasma display panels,” J. Display. Technologies, vol. 4, no. 1, pp. 70-80, Mar. 2008.
    [9] K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans, Power Electronics, vol. 5, pp. 293-304, July 1990.
    [10] J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS analysis of asymmetrical half-bridge converter,” IEEE Proc. Power Electronics Specialist Conference, vol. 1, pp. 243-247, 2001.
    [11] Robert W. Erickson and Dragn Maksimovic, Fundamentals of Power Electronics Second Edition, 2001
    [12] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 267-273, May. 1993.
    [13] C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-206, 2001.
    [14] R. Srinivasan, and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. Power Electronics, vol. 13, no. 3, pp. 487-499, 1998.
    [15] L. H. Dixon, “High power factor pre-regulators for off-line power supplies,” Unitrode Application Note, TOPIC6, pp. 1-16.
    [16] S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with improved input power factor and high power density,” IEEE Trans. Industrial Electronics, vol. IA-22, no. 6, pp. 1073-1081, 1986.
    [17] P. N. Enjeti, and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 190-195, 1993.
    [18] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Edition. New York: John Wiley & Sons, 2003, pp. 249-297
    [19] K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans, Power Electronics, vol. 5, pp. 293-304, July 1990.
    [20] J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS analysis of asymmetrical half-bridge converter,” IEEE Proc. Power Electronics Specialist Conference, vol. 1, pp. 243-247, 2001.
    [21] K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans, Power Electronics, vol. 5, pp. 293-304, July 1990.
    [22] J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS analysis of asymmetrical half-bridge converter,” IEEE Proc. Power Electronics Specialist Conference, vol. 1, pp. 243-247, 2001.
    [23] R. Liu and C. Q. Lee, “The LLC-type series resonant converter variable switching frequency control,” Proc. Midwest Symposium Circuits and Systems, vol. 1, pp. 509-512, Aug. 1989.
    [24] B.Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” IEEE Proc. Applied Power Electronics Conference and Exposition, vol. 2, pp. 1108-1112, Mar. 2002.
    [25] R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Trans. Industrial Electronics, vol. 31, no. 2, pp. 181-191, May 1984.
    [26] T. Liu, Z. Zhou, A. Xiong, J. Zeng, and J. Ying, “A novel precise design method for LLC series resonant converter,” Annual International Telecommunications Energy Conference, pp. 533-538, 2006.
    [27] Bo Yang, “Topology investigation for front End DC/DC power conversion for distributed power system,” Ph.D. Dissertation, Virginia Tech, Virginia Tech, Blacksburg, VA, USA, Feb. 2003.
    [28] B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. van Wyk, “Optimal design methodology for LLC resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp.533-538, 2006.
    [29] K. Liu, R. Oruganti, and F. C. Lee, “Resonant switches topologies and characteristics,” IEEE Proc. Power Electronics Specialist Conference, pp. 106-116, 1987.
    [30] J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, vol. 2, pp. 728-735, 2001.
    [31] F. C. Lee, “High-frequency quasi-resonant converter technologies,” IEEE Proc. Power Electronics Specialist Conference, vol. 76, no. 4, pp.377-390, Apr. 1988.
    [32] ST Microelectronics, “LLC resonant half-bridge converter design guideline,” Application Note, AN2450, Oct. 2007.
    [33] ST Microelectronics, “High voltage resonant controller,” Data sheet, L6599, July. 2006.
    [34] Fairchild, “Half-bridge LLC resonant converter design using FSFR-series Fairchild power switch,” Application Note, AN-4151, Oct. 2007.
    [35] J. H. Jung and J. G. Kwon, “Theoretical analysis and optimal design of LLC resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp.1-10, 2007.
    [36] 梁適安,「高頻交換式電源供應器原理與設計」,全華科技圖書,2006年。
    [37] 廖益昌,「大尺寸液晶電視之數位化電源研製」,國立台灣科技大學電機工程系碩士學位論文,民國九十八年一月。
    [38] 郭憲明,「大尺寸液晶電視數位化電源之設計與建模」,國立台灣科技大學電機工程系碩士學位論文,民國九十九年七月。
    [39] G. C. Hsieh, C. Y. Tsai, and W. L. Hsu, “Synchronous Rectification LLC Series Rresonant Converter,” in Proc. IEEE APEC, pp. 1003-1009, Feb. 2007.
    [40] 陳揚斌,高效率LLC同步整流串聯諧振轉換器之研製,國立台灣科技大學電子工程系碩士論文,2009年。
    [41] 蔡富斌,具同步整流之數位控制半橋串聯諧振轉換器之研製,國立台灣科技大學電子工程系碩士論文,2012年。
    [42] Texas Instruments, “8-Pin Continuous Conduction Mode (CCM) PFC Controller,” Data Sheet, Preliminary, Oct. 2007.
    [43] 劉勝利、李龍文,「高頻開關電源新技術應用」,中國電力出版社,2008年。
    [44] Microchip Technology Inc.,” dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04,”Available: http://www.microchip.com.
    [45] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,民國96年11月。
    [46] “Implementing FIR and IIR Digital Filters Using PIC18 Microcontrollers,” Application Note AN852.
    [47] Filter Design for dsPIC™ DSC Digital Filter Design and Analysis System, Momentum Data Systems, Inc., 2008.
    [48] 趙清風,「控制工程初階-使用MATLAB Simulink」,全華科技圖書,民國90年12月。
    [49] 劉金琨,「先進PID控制MATLAB仿真」第二版,電子工業出版社,2004年。

    無法下載圖示 全文公開日期 2019/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE