簡易檢索 / 詳目顯示

研究生: 邱怡潔
Yi-chieh Chiu
論文名稱: 高效能高降壓比電能轉換器之研製
Study and Implementation of a High-Performance and High-Step-Down Ratio DC-to-DC Converter
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 劉添華
none
劉益華
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 高降壓比電能轉換器交錯式耦合繞組降壓轉換器數位控制器
外文關鍵詞: High Step-down Power Converter, Interleaved Coupled Inductor Synchronous Buck Co, Digital Controller
相關次數: 點閱:188下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對一高降壓比電能轉換器進行開發研究,將磷酸鋰鐵電池的高壓輸出,轉換成低壓直流輸出提供電動車之電子裝置使用。此電路係採用交錯式耦合繞組降壓轉換器,其利用增加耦合繞組設計高降壓比電路,達成高效率之特性目標。本論文已實現與測試高效能轉換器之實驗雛型電路,並進行模擬及實驗結果討論以驗證所研究架構的可行性。採用數位信號處理晶片dsPIC33FJ06GS202 實現轉換器電路之數位控制器,以提高系統之可靠性與可擴充性。雛型電路的規格為輸出功率100W、操作頻率100kHz、輸入電壓120V、輸出電壓12V。


    This thesis is to conduct a high performance and high step-down DC/DC converter. A high performance digital power supply is studied to draw energy from the high-voltage LiFePO4 battery to provide a low-voltage DC voltage for electronic circuits in electric vehicles. The presented is an interleaved coupled inductor synchronous buck converter. High conversion efficiency can be achieved by the coupled inductor design for high step-down applications. Simulations and experimental results are discussed and compared to verify the feasibility of the studied schemes. The proposed converter is controlled by a DSP chip dsPIC33FJ06GS202, which is used to realize the digital controller for raising the system reliability and flexibility. A laboratory prototype with 100 W rated power has been built and tested. The switching frequency is 100 kHz, input voltage is 120 V and the output voltage is 12V.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1研究背景及動機 1 1.2論文大綱 3 第二章 雙相同步整流降壓轉換器架構與原理 4 2.1傳統降壓型轉換器 4 2.1.1連續導通模式 5 2.1.2不連續導通模式 7 2.2單相同步整流降壓轉換器 10 2.2.1 同步整流降壓型轉換器動作分析 11 2.3雙相同步整流降壓器特性 13 2.3.1雙相同步整流降壓轉換器電路原理 14 2.3.2雙相式降壓型轉換器輸入漣波分析 17 第三章 交錯式耦合繞組降壓型轉換器架構與原理 19 3.1交錯式耦合繞組降壓型轉換器 19 3.1.1交錯式耦合繞組降壓型轉換器原理 20 3.2交錯式耦合繞組降壓型轉換器之優點 27 3.2.1輸出漣波 27 3.2.2開關耐壓與耐流 30 第四章 交錯式耦合繞組降壓轉換器設計實例 32 4.1高效率高降壓比降壓型轉換器數位控制級設計 32 4.1.1數位控制IC dsPIC33FJ06GS202 介紹 32 4.1.2 DSP的初始化設定 35 4.1.3 數位補償器設計流程 36 4.1.4 程式設計流程 37 4.1.5 補償器模擬 39 4.1.6 PID 補償器設計 41 4.2驅動與取樣電路設計 42 4.2.1取樣電路設計 42 4.2.2功率開關驅動電路設計 43 4.3轉換器功率元件參數設計 44 4.3.1功率開關設計 44 4.3.2同步整流開關的選用 45 4.3.3變壓器設計 46 4.3.4輸出濾波電容設計 48 第五章電路模擬與實驗數據 51 5.1高效率高降壓比降壓型轉換器電路模擬及分析 51 5.2高效率高降壓比降壓型轉換器電路實測波形 54 5.2.1測量儀器與條件 54 5.2.2實測電路波形量測 54 5.3高效率高降壓比降壓轉換器電路轉換效率量測及穩壓率 60 5.3.1電路轉換效率量測 60 5.3.2電路輸出穩壓率 61 5.4 損耗分析 62 5.4.1功率開關損失 62 5.4.2變壓器損失 64 5.4.5功率消耗分佈分析 66 第六章 結論 67 6.1結論 67 6.2未來展望 68 參考文獻 69

    [1] C. C. Hua and M. Y. Lin, “A Study of Charging Control of Lead-acid Battery for Electric Vehicles,” ISIE 2000 Conference, vol. 1, pp: 135-140, Dec. 2000.
    [2] R. C. Cope and Y. Podrazhansky, “The Art of Battery Charging,” Proc. 14th Annual Battery Conf. Application Advances, pp. 233-235, Jan. 1999.
    [3] S. Harrington and J. Dunlop, “Battery Charge Controller Characteristics in Photovoltaic Systems,” IEEE Aerospace Electronics System Magazine, vol. 7, no. 8, pp. 15-21, 1992.
    [4] T. S. Mundra and A. Kumar “An Innovative Battery Charger for Safe Charging of NiMH/NiCd Batteries”, IEEE Transactions on Consumer Electronics, vol. 53, no. 3, pp. 1044-1052, 2007.
    [5] F. Boico, B. Lehman and K. Shujaee, “Solar Battery Chargers for NiMH Batteries”, IEEE Transactions on Power Electronics, vol. 22, No. 5, pp. 1600-1609, September 2007.
    [6] M. Gonzdez, F.J. Ferrero, J.C. Antbn, and M.A. Pkez “Considerations to Improve the Practical Design of Universal and Full-Effective NiCd/NiMH Battery Fast Chargers”, Applied Power Electronics Conference (APEC) Proceedings, pp. 167-173, 1999.
    [7] J. Díaz, J. A. Martín-Ramos, A. M. Pernía, F. Nuño, and F. F. Linera “Intelligent and Universal Fast Charger for NiCd and NiMH Batteries in Portable Applications”, IEEE Transaction on Industrial Electronics, vol. 51, no. 4, pp. 857-863, 2004.
    [8] Y. S. Wong, W. G. Hurley, and W. H. Wolfle, “Temperature Compensation Algorithm for Interrupted Charge Control Regime for a VRLA Battery in Standby Applications,” IEEE 23rd Applied Power Electronics Conference and Exposition, 2008, pp. 1278-1283.
    [9] E. Koutroulis and K. Kalaitzakis, “Novel Battery Charging Regulation System for Photovoltaic Applications,” IEE Proceedings on Electric Power Applications, Vol. 151, Issue: 2, 2004, pp. 191-197.
    [10] M.F.M. Elias, K.M. Nor and A.K. Arof, “Design of Smart Charger for Series for Lithium-Ion Batteries”, IEEE PEDS’05, p.p. 1485-1490, 2005.
    [11] J. Wang, Z. Sun, and X. Wei, “Performance and Characteristic Research in LiFePO4 Battery for Electric Vehicle Applications,” IEEE Vehicle Power and Propulsion Conference, 2009 , pp. 1657-1661.
    [12] W. Chen, “High Efficiency, High Density, PolyPhase Converters for High Current Applications,” Linear Technology, Application Note 77-16, 1999.
    [13] Intersil corporation, “HIP6303 Microprocessor Core Voltage Regulator Multi-Phase Buck PWM Controller” ,Data sheet, 1999.
    [14] W. Huang, G. Schuellein, and D. Clavette, “A Scalable Multiphase Buck Converter with Average Current Share Bus,” in Proc. IEEE APEC '03, vol. 1, 2003, pp. 438-443.
    [15] K.Yao, Y. Qiu, M. Xu, and Fred C. Lee, “A Novel Winding Coupled-Buck Converter forHigh-Frequency, High Step-Down DC/DC Conversion” IEEE on transaction power electronic, vol.20, 2005,pp.1017-1023.
    [16] W. Huang, “A New Control for Multi-Phase Buck Converter with Fast Transient Response,” in Proc. IEEE APEC’01, vol. 1, 2001, pp. 273-279.
    [17] D. Arrigo, and G. Gattavari, “Current Sharing of The L4973 in a Multiphase Application”, STMicroelectronics Application Note AN1126, 1999.
    [18] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters, Applications, and Design, Third Edition, John Wiley & Sons, Inc., 2003.

    無法下載圖示 全文公開日期 2017/06/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE