簡易檢索 / 詳目顯示

研究生: 曾柏翔
Bo-Xiang Zeng
論文名稱: 圖騰柱無橋式功率因數修正器研製
Study and Implement of a Totem-Pole Bridgeless PFC Converter
指導教授: 邱煌仁
Huang-Jen Chiu
劉益華
Yi-Hua Liu
口試委員: 林景源
Jing-Yuan Lin
謝耀慶
Yau-Ching Hsieh
黃仁宏
Ren-Hong Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 無橋式功率因數修正器氮化鎵電晶體數位控制責任週期前饋
外文關鍵詞: bridgeless topology, Gallium nitride, digital control, duty ratio feedforward
相關次數: 點閱:382下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在研製一輸出功率1000瓦、輸入交流電壓90V至264V、輸出直流電壓400V之高效率、高功率密度綠能系統應用之電源轉換器。本論文採用無橋架構中的圖騰柱無橋式架構,利用氮化鎵高電子移動率電晶體取代原先的金氧半場效電晶體,達到高功率、高效率之圖騰柱無橋式功率因數修正器,控制方面採用數位控制方式取代傳統類比IC控制模式。傳統類比IC因成本較低,經常被使用,但與數位控制相較之下在缺點上較多,無法應用高階控制技術。因此,本論文使用數位控制器發展出,以平均電流法為主要控制策略,另外為了改善數位化控制,造成取樣上的誤差,加入數位化電流取樣修正控制法,以及因為連續導通模式與不連續導通模式電流轉移函數不同,造成的失真,加入責任週期前饋控制法。最後達到輸入交流電壓230V,最高效率為98.8%、輸入交流電壓115V,最高效率97.22%之高效率轉換器。


    This thesis aims to study and design a power converter for high efficiency, high power density green energy system implementation. With output power 1000W, input AC voltage 90V to 264V, output DC voltage 400V. This thesis adopts totem pole bridgeless topology, using Gallium nitride High electron mobility transistor to replace Metal Oxide Semiconductor Field Effect Transistor(MOSFET), implements a high power, high-efficiency totem pole bridgeless power factor corrector. On the other hand, using the digital control to replace the analog control, the analog control is economical and simple but when compared with digital control, there are some disadvantages such as not able to use advanced control technology and so on. Therefore, this thesis using average current control based on digital control as the main control strategy. In addition, in order to solve the problem of sampling error, a digital current sampling correction control method has been added. The difference of the transfer function between continuous conduction mode and discontinuous conduction mode current could result in current distortion, which has been solved by using the duty ratio feedforward method. Finally, a high-efficiency converter has been achieved, 98.9 % of efficiency under 230 V AC input voltage and 97.22 % of efficiency under 115 V AC input voltage.

    摘 要 Abstract 誌 謝 目 錄 圖索引 表索引 第一章 緒論 1.1 研究目的 1.2 章節大綱 第二章 功率因數修正器簡介 2.1 功率因數修正器電流控制法介紹 2.1.1 峰值電流控制法 2.1.2 平均電流控制法 2.2 主動式功率因數修正器種類介紹 2.2.1 單開關標準式功率因數修正器 2.2.2 無橋式功率因數修正器 2.2.3 圖騰柱無橋式功率因數修正器 2.2.4 無橋式功率因數修正器比較 第三章 圖騰柱無橋式功率因數修正器分析 3.1 氮化鎵高電子移動率電晶體簡介 3.2 圖騰柱無橋式各區間動作狀態分析 3.3 零交越控制與緩啟動控制 3.4 數位化功率因數修正器控制 3.4.1 數位化電流取樣修正 3.4.2 責任週期前饋 第四章 控制韌體規劃 4.1 數位微控制器規格簡介 4.2 系統控制流程 4.2.1 圖騰柱無橋式功率因數修正器主程式 4.2.2 A/D中斷副程式 第五章 電路設計與實現 5.1 電路設計與開關元件選擇 5.2 磁性元件設計 5.2.1 鐵芯選擇 5.2.2 繞線線徑選擇 5.2.3 電感匝數計算 5.3 輸出電容設計 5.4 感測電路設計 5.4.1輸出直流電壓感測電路 5.4.2 輸入交流電壓感測電路 5.4.3 電感電流感測電路 第六章 電路模擬及實測驗證 6.1 圖騰柱無橋式功率因數修正器模擬 6.2 圖騰柱無橋式功率因數修正器量測數據 6.2.1 量測及儀器 6.3 實測波形 6.4 實測數據 第七章 結論與未來展望 7.1 結論 7.2 未來展望 參考文獻

    [1]宋自恆、林慶仁,「功率因數修正器之原理與常用元件規格」,新電子科技雜誌217期,民國93年4月。
    [2]吳義利,「切換式電源轉換器原理與實用設計(實例設計導向) 」,文笙書局股份有限公司,2012年。
    [3]林政廷,倍壓整流無橋交流開關功率因數修正器之研製,國立台灣科技大學電子工程系碩士論文,2012年。
    [4]H. L., Y. Jang, and Jovanovic,M.M., “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381–1390, Mar. 2008.
    [5]黃耀億,無橋式功率因數修正器之研製,國立台灣科技大學電子工程系碩士論文,民國96年。
    [6]Kashif Habib, Aftab Alam and Shahbaz Khan, “Average current control mode boost converter for the tuning of total harmonic distortion & power factor correction using PSIM,” Global journal of researches in engineering, vol. 14, no. 1, pp. 1-7, Sep. 2014.
    [7]GaN Systems “ High Efficiency CCM Bridgeless Totem Pole PFC Design using GaN E-HEMT ” Reference Design, rev170411,
    [8]Bo Zhou “CCM Totem-Pole Bridgeless PFC with Ultra-Fast IGBT” November 25, 2014.
    [9]Transphorm, Inc., TDPS2400E2C1 Totem Pole PFC Evaluation Board, Application Note, www.transphormusa.com, July 15, 2015.
    [10]Lingxiao Xue, Zhiyu Shen, Dushan Boroyevich, “GaN-based High Frequency Totem-Pole Bridgeless PFC Design with Digital Implementation”, 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 15-19 March 2015, Page(s) 759 – 766
    [11]Bosheng Sun, “How to reduce current spikes at AC zero-crossing for totem-pole PFC” Texas Instruments, Analog Applications Journal, pp.23-26, 2015.
    [12]Z. Ye, A. Aguilar, Y. Bolurian, and B. Daugherty, “GaN FET-Based High CCM Totem-Pole Bridgeless PFC,” 2014/2015 Texas Instruments Power Supply Design Seminar.
    [13]Koen De Gussem´e, David M. Van de Sype, Alex P. Van den Bossche and Jan A. Melkebeek, “Sample correction for digitally controlled boost PFC converters operating in both CCM and DCM”, Applied Power Electronics Conference and Exposition, 2003. APEC '03. Eighteenth Annual IEEE, 9-13 Feb. 2003.
    [14]Koen De Gussem´e, David M. Van de Sype, Alex P. Van den Bosschr:,and Jan A. Melkebeek, “Digital Control of Boost PFC Converters Operating in both Continuous and Discontinuous Conduction Mode”,Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 20-25 June 2004.
    [15]David M. Van de Sype, , Koen De Gussemé,Alex P. M. Van den Bossche, and Jan A. Melkebeek,“Duty-ratio feedforward for digitally controlled boost PFC converters” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 1, FEBRUARY 2005.
    [16]Texas Instruments,“TMS320F2803x Piccolo Microcontrollers,” Revised SPRS584L, Dec 2017.
    [17]Texas Instruments, “TMS320F2803x Piccolo System Control and Interrupts,” Reference Guide, May 2009.
    [18]Laszlo Huber, Yungtaek Jang, and Milan M. Jovanovic, “Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous conduction mode,” IEEE Transactions on power Electronics, vol. 52, no. 1, pp. 88-97, Feb. 2005.
    [19]LaszloHuber, Yungtaek Jang, and Milan M. Jovanovic, “Performance evaluation of bridgeless,” IEEE Transactions on power Electronics, vol. 23, no. 3, pp. 1381-1390, May. 2008.
    [20]Jian Sun, Daniel M. Mitchell and Matthew F. Greuel, “Averaged Mo- deling of PWM Converters Operating in Discontinuous Conduction Mode,” IEEE Trans. Power. Electron., vol. 16, no. 4, pp. 482-492, July. 2001.
    [21]廖荻,雙向無橋交流開關交/直流轉換器研製,國立台灣科技大學電子工程系碩士論文,民國107年。
    [22]Zhengyang Liu, Xiucheng Huang, Wenli Zhang, Fred C. Lee, Qiang Li,“Evaluation of High-Voltage Cascode GaN HEMT in Different Packages,”in Proc. Applied Power Electronics Conference and Exposition (APEC) Twenty-Ninth Annual IEEE, 2014, pp. 168 – 173.
    [23]R.W.Erickson and D.Maksimovic “Fundamentals of Power Electron ics, 2nd ed. ” Boston, MA: Kluwer, 2000
    [24]H. Wei and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” Proc. of IEEE Power Electronics Specialist Conference, pp. 1162-1172, 1998.
    [25]P. C. Todd, “UC3854 controlled power factor correction circuit design,” U-134, Unitrode Application Note
    [26]J.S Lai and D. Chen, “Design Consideration for Power Factor Correction Boost Converter Operating at the Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode,” Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 267-273, 1993.
    [27]J. Le Bunetel and M. Machmoum, “Control of Boost unity Power Factor Correction Systems”, IEEE Transactions on Power Electronics 1999, pp. 266-271.
    [28]Etz, R.; Patarau, T.; Petreus, D., "Comparison between digital average current mode control and digital one cycle control for a bridgeless PFC boost converter," Design and Technology in Electronic Packaging (SIITME), 2012 IEEE 18th International Symposium for , vol., no., pp.211,215, 25-28 Oct. 2012
    [29]R. B. Ridley, “Average small-signal analysis of the boost power factor correction circuit,” VPEC Seminar Proceedings, 1989, pp.108-120.
    [30]Totem pole bridgeless PFC using GaN transistor. GaN System Inc. Application Notes
    [31]Jae-Hyun Kim; Gun-Woo Moon; Jae-Kuk Kim,"Zero-voltage-switc- hing totem-pole bridgeless boost rectifier with reduced reverse-reco- very problem for power factor correction," Power Electronics and M- o tion Control Conference (IPEMC), 2012 7th International , vol.2, no., pp.1044,1048, 2-5 June 2012
    [32]J. Yungtaek and M. M. Jovanovic, "A Bridgeless PFC Boost Rectifier With Optimized Magnetic Utilization," IEEE Transactions on Power Electronics, vol. 24, pp. 85-93, 2009
    [33]Q. Li, M. A. E. Andersen and O. C. Thomsen, "Conduction losses and common mode EMI analysis on bridgeless power factor correction," in Proc. of International Conference on Power Electronics and Drive Systems, Nov. 2009, pp. 1255-1260.
    [34]Gopinath, M.; Prabakaran; Ramareddy, S., "A brief analysis on bridgeless boost PFC converter," Sustainable Energy and Intelligent Systems (SEISCON 2011), International Conference on, vol., no., pp.242,246, 20-22 July 2011
    [35]C. Woo-Young, K. Jung-Min, K. Eung-Ho, L. Jong-Jae, and K. Bong-Hwan, "Bridgeless Boost Rectifier With Low Conduction Losses and Reduced Diode Reverse-Recovery Problems, " Industrial Electronics, IEEE Transactions on, vol. 54, pp. 769-780, 2007.
    [36]On Semiconductor. (2011), Power Factor Correction (PFC) Handbook Choosing the Right Power Factor Controller Solution, Rev.
    [37]Basu, Supratim, et el. “PFC Strategies in Light of EN 61000-3-2.” Bose Research Pvt. Ltd., Bangalore, India. Paper identification number A123656. (2004): pp. 1-9.

    QR CODE