簡易檢索 / 詳目顯示

研究生: 郭憲明
Hsien-Ming Kuo
論文名稱: 大尺寸液晶電視數位化電源之設計與建模
Design and Modeling of a Digitalized Power Supply for Large Size LCD TVs
指導教授: 劉益華
Yi-Hua Liu
口試委員: 郭見隆
Jian-Lung Kuo
羅有綱
Yu-Kang Lo
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 124
中文關鍵詞: 液晶電視交錯式臨界導通模式功率因數修正器相量轉換法LLC諧振轉換器
外文關鍵詞: LCD TV, Interleaved Critical Conduction Mode PFC, Phase Transformation Method, LLC Series Resonant Converter
相關次數: 點閱:133下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受到製程技術進步、全球景氣復甦及價格下滑,大尺寸液晶電視成為市場主流,但隨著環保與節能的議題日益受到重視,相關規範皆要求液晶電視的功耗愈來愈低。故創新電源供應的設計也將成為未來勝出的關鍵,如何兼顧成本低、體積小與轉換效率高,已成為相關設計人員所面臨的共通課題。
    本篇論文主要目的是設計適用於大尺寸液晶電視的數位化電源,整體架構大致分為二個部分:前級使用交錯式臨界導通模式操作的功率因數修正電路作為前置調節器,以改善功率因數並減少輸入電流之總諧波失真。後級則應用相量轉換法推導出LLC串聯諧振轉換器小信號模型並設計補償器。最後再以Microchip dsPIC30F2020為數位控制核心,達成數位變頻控制、減少元件成本及提供更彈性的設計之目的。藉由數位方式實現PID控制器,完成液晶電視的數位化電源。實驗結果證明所提出系統之可行性。


    Nowadays, liquid crystal display (LCD) panels are widely used in applications such as monitors, notebooks and televisions. In large scale LCD TV (>30”), the power supply is generally internal as it requires from 200 W to 600 W. Because the input power is above 75 W, the application has to be compliant with the IEC1000-3-2 class D standard. Therefore, power factor correction (PFC) is needed. In this thesis, the design of a digitalized power supply for large scale LCD TV is presented. The whole system consists of three major parts. An interleaved critical conduction mode (CRM) power factor corrector in front stage is employed as pre-regulator for improving the input power factor and reducing the total harmonic distortion. A half-bridge LLC resonant converter is utilized as the DC/DC conversion stage. The LLC resonant topology allows for zero voltage switching (ZVS) of the main switches, thereby dramatically lowering switching losses and boosting efficiency. Finally, the dsPIC30F2020 from Microchip corp. is used as the digital controller of the LLC resonant converter. In order to design the compensation circuit correctly, the large-signal and small-signal model of the utilized LLC converter is also derived in this thesis using the phasor transformation method. In order to verify the correctness of the proposed system, experimental results will be given to validate the correctness of the proposed system and the measured efficiency of the whole system achieved 82%.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文大綱 5 第二章 功率因數修正電路原理簡介 6 2.1功率因數與諧波失真之定義 6 2.2功率因數修正器之種類 8 2.2.1 被動式功率因數修正器 8 2.2.2主動式功率因數修正器 10 2.3 升壓型功率因數修正器電路架構及原理簡介 11 2.4 功率因數修正器之控制模式介紹 12 2.5 雙相交錯式升壓型轉換器介紹 15 2.6 雙相交錯式升壓型轉換器動作時序分析 17 2.7 小結 22 第三章 半橋式串聯諧振轉換器 23 3.1 理想RLC串聯諧振電路頻率響應分析 23 3.2 半橋式串聯諧振網路簡介 25 3.2.1 串聯諧振串聯負載 25 3.2.2 串聯諧振並聯負載 27 3.2.3 串聯諧振串並聯負載 29 3.2.4 結論 31 3.3 LLC串聯諧振轉換器之簡介 32 3.3.1 LLC諧振轉換器頻率響應分析 32 3.4 LLC串聯諧振轉換器之動作分析 37 3.4.1 Region-1之電路動作分析 38 3.4.2 Region-2之電路動作分析 49 3.5 小結 56 第四章 硬體電路規格制定及設計 57 4.1 雙向交錯式主動功率因數修正電路設計 57 4.1.1 UCC28060 IC簡介 57 4.1.2 電路規格 58 4.1.3 電路元件之設計與選用 59 4.1.4 硬體電路佈局(Layout)考量 62 4.2 LLC諧振轉換器電路設計 62 4.2.1 L6599 IC簡介 62 4.2.2 電路規格制定 62 4.2.3 電路元件之設計與選用 63 4.2.4 硬體電路佈局(Layout)考量 68 第五章 LLC串聯諧振轉換器小信號建模分析 69 5.1 諧振轉換器小信號模型概述 69 5.2 包絡信號與相量轉換法 69 5.2.1 包絡信號概述 70 5.2.2 基本元件之相量轉換模型 71 5.2.3 切換網路與含有變壓器的整流網路之包絡模型 74 5.3 LLC串聯諧振轉換器等效電路模型 77 5.4 閉迴路系統補償器設計 79 第六章 數位控制之LLC諧振轉換器 84 6.1 dsPIC30F2020微處理器簡介 84 6.2系統架構 86 6.3程式流程規劃 86 6.3.1 類比/數位轉換 87 6.3.2 數位PID控制器簡介及設計 88 6.3.3 互補式脈波寬度調變之變頻控制 92 6.4 小結 94 第七章 實驗結果與討論 95 第八章 結論與未來展望 112 8.1 結論 112 8.2 未來研究方向 113 參考文獻 114 附錄A 119

    [1] 王智弘,「分食液晶電視電源商機大餅,AC/DC晶片商各顯神通」,新電子雜誌第 264期,2008年3月號。
    [2] 王智弘,「瞄準節能新趨勢,電源晶片商攻勢連連」,新電子雜誌第 269期, 2008年8月號。
    [3] P. N. Enjeti, and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 190-195, 1993.
    [4] R. Srinivasan, and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. Power Electronics, vol. 13, no. 3, pp. 487-499, 1998.
    [5] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 267-273, May. 1993.
    [6] C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-206, 2001.
    [7] L. H. Dixon, “High power factor pre-regulators for off-line power supplies,” Unitrode Application Note, TOPIC6, pp. 1-16.
    [8] L. H. Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U-140, pp. 356-369.
    [9] B. P. Divakar, and D. Suanto, “A new boost power factor pre-regulator,” IEEE Proc. PEDS’99, vol. 2, pp. 915-920, 1999.
    [10] L.H. Dixon, “High power factor pre-regulation design optimization,” Unitrode Application Note, TOPIC7, pp. 1-12.
    [11] S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with improved input power factor and high power density,” IEEE Trans. Industrial Electronics, vol. IA-22, no. 6, pp. 1073-1081, 1986.
    [12] Woo-Young Choi and Bong-Hwan Kwon, “An efficient power factor correction scheme for plasma display panels,” J. Display. Technologies, vol. 4, no. 1, pp. 70-80, Mar. 2008.
    [13] Gang Yao, Alian Chen and X. He, “Soft switching circuit for interleaved boost converters,” IEEE Trans. Power Electronics, vol. 22, no. 1, pp. 80-86, Jan. 2007
    [14] J. A. C. Pinto, A. A. Pereira, V. J. Farias, L. C. de Freitas, and J. B. Vieira, “A power factor correction pre-regulator ac-dc interleaved boost with soft-commutation,” IEEE Proc. Power Electronics Specialist Conference, 1997, pp. 121-125.
    [15] Jiun-Ren Tsai, “Interleaving phase shift for critical mode boost PFC,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1348-1357, 2008.
    [16] Texas Instruments, “Natural Interleaving Dual-Phase Transition- Mode PFC Controller,” Data Sheet, Preliminary, 2007.
    [17] Michael O’Loughlin, “An Interleaved PFC Pre-regulator for High Power Converters,” Texas Instruments Application Note, Topic 5, pp. 1-14.
    [18] Mike O’Loughlin, “PFC pre-regulator frequency dithering circuit,” Texas Instruments Application Report. SLUA, pp. 1-8, 2007.
    [19] Bor-Ren Lin, “Interleaved ZVS converter with ripple-current cancellation,” IEEE Trans. Industrial Electronics, vol. 55, no. 4, pp. 1576-1585, 2008.
    [21] K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans. Power Electronics, vol. 5, pp. 293-304, July 1990.
    [22] J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS analysis of asymmetrical half-bridge converter,” IEEE Proc. Power Electronics Specialist Conference, vol. 1, pp. 243-247, 2001.
    [23] R. Liu and C. Q. Lee, “The LLC-type series resonant converter variable switching frequency control,” Proc. Midwest Symposium Circuits and Systems, vol. 1, pp. 509-512, Aug. 1989.
    [24] B.Yang, F. C. Lee, A. J. Zhang and G. Huang, “LLC resonant converter for front end DC/DC conversion,” IEEE Proc. Applied Power Electronics Conference and Exposition, vol. 2, pp. 1108-1112, Mar. 2002.
    [25] Philips Research Lab., “First harmonic approximation including design constraints,” Annual International Telecommunications Energy Conference, pp. 321-328, 1998.
    [26] R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Trans. Industrial Electronics, vol. 31, no. 2, pp. 181-191, May 1984.
    [27] T. Liu, Z. Zhou, A. Xiong, J. Zeng, and J. Ying, “A novel precise design method for LLC series resonant converter,” Annual International Telecommunications Energy Conference, pp. 533-538, 2006.
    [28] Bo Yang, “Topology investigation for front End DC/DC power conversion for distributed power system,” Ph.D. Dissertation, Virginia Tech, Virginia Tech, Blacksburg, VA, USA, Feb. 2003.
    [29] B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. van Wyk, “Optimal design methodology for LLC resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp.533-538, 2006.
    [30] K. Liu, R. Oruganti and F. C. Lee, “Resonant switches topologies and characteristics,” IEEE Proc. Power Electronics Specialist Conference, pp. 106-116, 1987.
    [31] J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, vol. 2, pp. 728-735, 2001.
    [32] F. C. Lee, “High-frequency quasi-resonant converter technologies,” IEEE Proc. Power Electronics Specialist Conference, vol. 76, no. 4, pp.377-390, Apr. 1988.
    [33] ST Microelectronics, “LLC resonant half-bridge converter design guideline,” Application Note, AN2450, Oct. 2007.
    [34] ST Microelectronics, “High voltage resonant controller,” Data sheet, L6599, July. 2006.
    [35] Fairchild, “Half-bridge LLC resonant converter design using FSFR-series Fairchild power switch,” Application Note, AN-4151, Oct. 2007.
    [36] J. Groves, "Small-signal analysis using harmonic balance methods," Proceedings of the IEEE Power Electronics Specialist Conference, pp. 74-79, 1991.
    [37] E. X. Yang, F. C. Lee, “Extended describing function method for small-signal modeling of resonant and multi-resonant converter,” Ph.D. Dissertation, Virginia Tech, Virginia Tech, Blacksburg ,VA, USA, Feb 1994.
    [38] C. T. Rim, G. H. Cho, “Phasor transformation and its application to the DC/AC analyses of frequency phase-controlled series resonant converters,” IEEE Transactions on Power Electronics, vol. 5, No. 2, pp.201-211, April 1990.
    [39] S. Ben-Yaakov, S. Glozman, and R. Rabinovici, “Envelope simulation by SPICE-compatible models of electric circuits driven by modulated signals,” IEEE Transactions on Industrial Electronics, vol. 47, no. 1, pp. 222-225, February 2000.
    [40] S. Ben-Yaakov, S. Glozman, and R. Rabinovici, “Envelope simulation by SPICE-compatible models of linear Electric Circuits Driven by Modulated Signals,” IEEE Transactions on Industry Applications, vol. 37, no. 2, pp. 527 - 533, March/April 2001.
    [41] Y. Yin, R. Zane, J. Glaser, and R. W. Rrickson, “Small-signal analysis of frequency-controlled electronic ballasts,” IEEE Transactions on circuits and systems-I: fundamental theory and applications,Vol.5, No.8, August 2003.
    [42] J. Tian, J. Petzoldt, T. Reimann, M. Scherf, G. Berger, “Modelling of asymmetrical pulse width modulation with frequency tracking control using phasor transformation for half-bridge series resonant induction cookers,” 11th European Conference on Power Electronics and Applications (EPE), September, 2005, Dresden, Germany.
    [43] 廖益昌,「大尺寸液晶電視之數位化電源研製」,國立台灣科技大學電機工程系碩士論文,民國九十八年。
    [44] 謝明琮,「適合全載範圍操作之全橋相移式串聯諧振直流/直流轉換器研製」,國立台灣科技大學電子工程系碩士論文,民國九十六年。
    [45] 鐘郁緯,「符合能源之星規範個人電腦電源供應器之研製」,國立台灣科技大學電子工程系碩士論文,民國九十七年。
    [46] Microchip Tech, “dsPIC30F1010/202x,” Data Sheet, Preliminary, 2006.

    QR CODE