簡易檢索 / 詳目顯示

研究生: 曾建銘
Chien-Ming Tseng
論文名稱: 基於最佳化軌跡控制之全橋LLC諧振轉換器輕載效率改善技術
A Light-Load Efficiency Improvement Technique with Simplified Optimal Trajectory Control for Full-Bridge LLC Resonant Converters
指導教授: 劉益華
Yi-Hua Liu
口試委員: 邱煌仁
Huang-Jen Chiu
劉添華
Tian-Hua Liu
王順忠
Shun-Chung Wang
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 137
中文關鍵詞: 全橋LLC諧振轉換器簡易最佳化軌跡控制輕載效率改善
外文關鍵詞: full-bridge LLC resonant converter, simplified optimized trajectory control, improved light-load efficiency
相關次數: 點閱:248下載:48
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相對於傳統諧振轉換器,LLC諧振轉換器具有許多優點,包含能在較小切換頻率範圍內調節輸出電壓,以及可在較寬的操作範圍內實現零電壓切換,並利用功率開關上的寄生元件達成零電壓切換而不需額外電路。由於LLC諧振轉換器於輕載時效率不佳,因此本文提出一種全橋LLC諧振轉換器混合控制策略,此控制策略使全橋LLC諧振轉換器在10%負載以內使用混合脈衝之簡化最佳化軌跡控制(Simplified Optimal Trajectory Control, SOTC),並在大於10%負載之後使用變頻控制,使全負載範圍內都能達到良好的轉換效率。本文首先詳細分析傳統LLC諧振轉換器之動作原理與設計考量,接著介紹混合脈衝SOTC之原理,並將兩種方法結合於同一台LLC諧振轉換器上。
    為了驗證本文所提方法之正確性與可行性,實際完成一台1 kW之LLC諧振轉換器。並根據實測結果與變頻控制、突衝模式、減少責任週期控制進行比較,於4%負載時效率分別提升了12.77%、19.62%、0.34%,輸出電壓漣波分別降低81.4%、92.9%與88.4%,且10%負載以下之輸出電壓漣波為所有控制法中最低者,並於變頻模式時能達到本電路最佳轉換效率95.36%。


    Compared to traditional resonant converters, LLC resonant converters have many advantages, including the ability to regulate the output voltage with small switching frequency range, zero voltage switching (ZVS) with wide operating range, and the use of parasitic elements on power switches which achieve zero voltage switching without additional circuitry. Because the LLC resonant converter cannot achieve a good light-load efficiency, this thesis proposes a full-bridge LLC resonant converter with hybrid control strategy. This control strategy enables the full-bridge LLC resonant converter to use mixed-pulse simplified optimized trajectory control (SOTC) before 10% of the load, and uses variable frequency control after 10% of the load, so that the full-load range can achieve good conversion efficiency. First, this thesis analyzes the operation principle and design considerations of the traditional LLC resonant converter in detail, then introduces the principle of mixed pulse SOTC, and combines the two methods on the same LLC resonant converter.
    In order to verify the correctness and feasibility of the method proposed in this thesis, a 1kW LLC resonant converter with 1 kW was actually completed. The experimental results are measured and compared with variable frequency control, burst mode and reduced duty cycle control. At 4% load, the efficiency is improved by 12.77%, 19.62% and 0.34%, besides the output voltage ripple is reduced by 81.4%, 92.9% and 88.4% respectively. The output voltage ripple at light load is the lowest in all control methods, and can reach the best conversion efficiency of this circuit in the frequency conversion mode, 95.36%.

    摘要 I Abstract II 誌謝 III 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 論文大綱 3 第二章 全橋LLC諧振電源轉換器架構與分析 5 2.1 理想RLC串聯諧振電路分析 6 2.2 全橋串聯諧振轉換器簡介 8 2.3 LLC諧振轉換器頻率響應分析 10 2.4 全橋LLC諧振轉換器操作模式分析 17 2.4.1 Region-1電路操作模式分析 18 2.4.2 Region-2 電路操作模式分析 28 2.5 LLC諧振轉換器特性分析 39 2.5.1 Q值大小對於轉移函數的影響 40 2.5.2 K值大小對於轉移函數的影響 41 第三章 LLC諧振轉換器輕載效率提升技術 44 3.1 控制之策略與設計 44 3.1.1 SOTC之原理[26] 47 3.1.2 混合脈衝SOTC[11] 50 3.1.3 混合比例計算 52 3.1.4 混合方式 52 3.2 SOTC之操作模式分析[13] 53 第四章 硬體電路規格制訂與設計 66 4.1 硬體電路規格制訂 66 4.2 電路元件參數設計與選用 67 第五章 數位控制器設計 76 5.1 前言 76 5.2 數位訊號處理器 76 5.3 程式設計流程介紹 80 5.4 數位濾波器 86 5.5 數位PID 89 5.5.1 PID介紹[28] 89 5.5.2 數位PID控制器 91 5.6 控制模式切換簡介 94 第六章 實驗結果與討論 96 6.1 本文之實際電路規格與設備介紹 96 6.2 實驗波形量測 97 6.3 本文所提方法與其他方法之實驗波形與探討 106 6.4 實測結果與探討 115 第七章 結論與未來展望 117 7.1 結論 117 7.2 未來展望 118 參考文獻 119

    [1] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Edition. New York: John Wiley & Sons, 2003, pp. 249-297.
    [2] K. H. Liu and F. C. Y. Lee, “Zero-Voltage Switching Technique in DC/DC Converters,” IEEE Transactions on Power Electronics, vol. 5, pp. 293-304, 1990.
    [3] J. Feng, Y. Hu, Wei Chen and Chau-Chun Wen, “ZVS Analysis of Asymmetrical Half-Bridge Converter,” IEEE Proc. Power Electronics Specialist Conference, vol. 1, pp. 243-247, 2001.
    [4] Infineon Technologies, “Resonant LLC Converter - Operation and Design,” Application note, 2012.
    [5] R. Beiranvand, B. Rashidian, M. R. Zolghadri and S. M. H. Alavi, “A Design Procedure for Optimizing the LLC Resonant Converter as a Wide Output Range Voltage Source,” IEEE Transactions on Power Electronics, Vol. 27, No. 8, pp. 3749–3763, 2012.
    [6] Texas Instruments, “Phase-Shifted Full-Bridge, Zero-Voltage Transition Design Considerations,” Application report, 2011.
    [7] W. J. Cha, J. M. Kwon and B. H. Kwon, “Highly Efficient Asymmetrical PWM Full-Bridge Converter for Renewable Energy Sources,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 5, pp. 2945–2953, 2016.
    [8] M. M. Jovanovi´c and B. T. Irving, “On-the-Fly Topology-Morphing Control—Efficiency Optimization Method for LLC Resonant Converters Operating in Wide Input- and/or Output-Voltage Range,” IEEE Transactions on Power Electronics, Vol. 31, No. 3, pp. 2596–2608, 2016.
    [9] H. P. Park, and J. H. Jung, “PWM and PFM hybrid control method for LLC resonant converters in high switching frequency operation,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 1, pp. 253–263, 2017.
    [10] N. Shafiei, M. Ordonez, M. Craciun, C. Botting and M. Edington, “Burst Mode Elimination in High-Power LLC Resonant Battery Charger for Electric Vehicles,” IEEE Transactions on Power Electronics, Vol. 31, pp. 1173 –1188, 2016.
    [11] C. Fei, Q. Li and F. C. Lee, “Digital Implementation of Light-Load Efficiency Improvement for High-Frequency LLC Converters With Simplified Optimal Trajectory Control,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, No. 4, pp. 1850-1859, 2018.
    [12] H. Wang, S. Dusmez and A. Khaligh, “Maximum Efficiency Point Tracking Technique for LLC-Based PEV Chargers Through Variable DC Link Control,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 11, pp. 6041 – 6049, 2014.
    [13] W. Feng, F. C. Lee and P. Mattavelli, “Optimal Trajectory Control of Burst Mode for LLC Resonant Converter,” IEEE Transactions on Power Electronics, Vol. 20, No. 4, pp. 963–973, 2005.
    [14] C. Fei, F. C. Lee and Q. Li, “Light Load Efficiency Improvement for High Frequency LLC Converters with Simplified Optimal Trajectory Control (SOTC),” IEEE Energy Conversion Congress and Exposition, pp. 1653–1659, 2015.
    [15] C. Fei, F. C. Lee and Q. Li, “Multi-step Simplified Optimal Trajectory Control (SOTC) for Fast Transient Response of High Frequency LLC Converters,” IEEE Energy Conversion Congress and Exposition, pp. 2064–2071, 2015.
    [16] R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Transactions on Industrial Electronics, vol. 31, no. 2, pp. 181-191, 1984.
    [17] B. Lu, W. Liu, Y. Liang, F. C. Lee and J. D. Van Wyk, “Optimal design methodology for LLC resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp.533-538, 2006.
    [18] J. F. Lazar, and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, vol. 2, pp. 728-735, 2001.
    [19] ST Microelectronics, “LLC resonant half-bridge converter design guideline,” Application Note, AN2450, 2007.
    [20] ST Microelectronics, “High voltage resonant controller,” Data sheet, L6599, 2006.
    [21] J. H. Jung and J. G. Kwon, “Theoretical analysis and optimal design of LLC resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp.1-10, 2007.
    [22] B. Wang, X. Xin, S. Wu, H. Wu and Jianping Ying, “Analysis and Implementation of LLC Burst Mode for Light Load Efficiency Improvement,” IEEE Applied Power Electronics Conference and Exposition, pp.58-64, 2009.
    [23] J. Chen, T. Sato, K. Yano, H. Shiroyama, M. Owa and M. Yamadaya, “An Average Input Current Sensing Method of LLC Resonant Converters for Automatic Burst Mode Control,” IEEE Transactions on Industrial Electronics, vol. 32, no. 4, pp. 3263-3272, 2017.
    [24] H. Pan1, C. He, F. Ajmal, H. Chen and G. Chen, “Pulse-width modulation control strategy for high efficiency LLC resonant converter with light load applications,” IET Power Electronics, pp.2887-2894, 2014.
    [25] Y. Shen, H. Wang, F. Blaabjerg, X. Sun and X Li, “Analytical Model for LLC Resonant Converter With Variable Duty-Cycle Control,” IEEE Energy Conversion Congress and Exposition, 2016.
    [26] W. Feng, F. C. Lee and P. Mattavelli, “Simplified Optimal Trajectory Control (SOTC) for LLC Resonant Converters,” IEEE Transactions on Power Electronics, Vol. 28, No. 5, pp. 2415–2426, 2013.
    [27] Texas Instruments, “TMS320F28004x Piccolo Microcontrollers,” Available at: http://www.ti.com/.
    [28] Wikipedia, the free encyclopedia, “PID controller,” Available at: https://en.wikipedia.org/wiki/PID_controller.
    [29] 蔡銘家,「具輸入電壓自調適之高效率LLC諧振轉換器」,國立台灣科技大學電機工程系碩士學位論文,2017年。
    [30] 林承盈,「適用於相移全橋轉換器之切換模式控制技術開發」,國立台灣科技大學電機工程系碩士學位論文,2016年。
    [31] 吳義利,「切換式電源轉換器」第二版,文笙書局股份有限公司,民國104年9月。
    [32] 邱奕勳,「電池充電用數位控制LLC諧振轉換器設計與研製」,國立台灣科技大學電機工程系碩士學位論文,2012年。
    [33] “Implementing FIR and IIR Digital Filters Using PIC18 Microcontrollers,” Application Note, AN852.
    [34] 呂宗翰,「全橋LLC諧振轉換器輕載效率改善技術」,國立台灣科技大學電機工程系碩士學位論文,2018年。

    QR CODE