簡易檢索 / 詳目顯示

研究生: 李仁豪
Ren-Hao Li
論文名稱: 可調式高壓脈衝電源供應器之模組化設計
Modular Design of Adjustable High Voltage Pulsed Power Supply
指導教授: 林長華
Chang-Hua Lin
口試委員: 黃仲欽
王永宜
陳堃峯
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 126
中文關鍵詞: 高壓脈衝電源供應器全橋LLC諧振轉換器模組化輸入並聯輸出串聯均壓突發模式
外文關鍵詞: high voltage pulsed power supply, full-bridge LLC resonant converter, modularization, input parallel output series (IPOS), voltage sharing, burst mode
相關次數: 點閱:354下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在實現可調式高壓脈衝電源供應器之模組化設計。所提之系統包括:一組直流/直流轉換器及一組輸出脈寬控制電路,其中,直流/直流轉換器採用全橋LLC諧振電路作為單一模組的主電路架構,並使用兩模組進行輸入並聯輸出串聯(Input-Parallel Output-Series, IPOS)的模組連接,以增加其輸出電壓與輸出功率。其次,所使用之數位控制器結合人機介面控制,可根據調整不同參數值來設定不同之輸出規格。此外,除了藉由讀取電壓回授取樣值,並計算其變動量,以調變系統操作頻率,使輸出電壓達到預定之設定值外,還可藉由讀取各模組之均壓回授取樣值,並計算其變動量,以調變責任週期,使模組間之輸出電壓達到均衡。再者,本文在脈寬控制策略上加入突發模式(Burst Mode),以消除電壓突波與諧振電流突波。最後,本文根據所挑選之系統參數進行電腦模擬,並以實測結果驗證所提系統之可行性與有效性。


    This thesis aims to achieve a modular design of an adjustable high voltage pulsed power supply. The proposed system includes a DC/DC converter and a circuit for controlling output pulse width. The DC/DC converter is structured by full-bridge LLC resonant circuit as a basic power module and combines through input parallel output series (IPOS) form to increase the output voltage and output power. Moreover, the digital controller is incorporated with a human-machine interface, where the different output specifications can be obtained according to the preset parameter values. In addition, in order to stabilize output voltage, the frequency modulation technique is used to reach the required level, and the duty cycle control is employed to balance the output voltage between power modules. Furthermore, the burst mode is added into the pulse width control strategy for eliminating voltage spike and resonant current spike. Finally, both the computer simulation and experimental results are used to verify the feasibility and validity of the proposed system.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 3 1.2.1 大氣電漿 4 1.2.2 靜電紡絲 5 1.2.3 靜電吸盤(ESC) 5 1.2.4 靜電除塵(ESP) 6 1.2.5 食品滅菌與加工 7 1.2.6 廢水處理 8 1.3 論文架構 9 第二章 高壓脈衝電源供應器之設計與分析 11 2.1 高壓脈衝電源供應器之簡介 11 2.1.1 全橋LLC串聯諧振轉換器之脈衝電源架構介紹 12 2.1.2 全橋LLC串聯諧振轉換器工作模式與數學分析 15 2.1.3 全橋LLC串聯諧振轉換器轉移函數分析 24 2.2 全橋LLC串聯諧振轉換器之寄生電容效應考量 31 2.3 柔性切換技術 34 2.4 各模組輸出電壓之均壓技術 36 2.5 突發模式(Burst Mode)應用於全橋LLC串聯諧振轉換器 40 2.6 高壓脈衝寬度控制技術 42 2.7 高壓脈衝開關(MOSFET)之串聯均壓技術 46 2.7.1 靜態均壓技術 47 2.7.2 動態均壓技術 49 第三章 數位化控制與輔助電源之設計 51 3.1 數位控制之必要性 51 3.2 數位控制器dsPIC33FJ64GS606之介紹 52 3.3 數位控制器與週邊元件之關係 56 3.4 人機介面之設計與實現 57 3.5 控制流程之說明 61 3.6 輔助電源之說明 63 第四章 系統規格及設計準則 64 4.1 高壓脈衝電源供應器之相關規格 64 4.2 變壓器設計 65 4.3 LLC串聯諧振電路設計 66 4.4 高壓側元件之選用 69 4.5 電壓回授控制之設計與實現 69 4.6 模組均壓回授控制之設計與實現 71 4.7 高壓脈衝開關串聯之靜態均壓設計與實現 73 4.8 高速PWM之驅動電路設計 74 4.9 類比數位信號轉換器(ADC) 75 4.10 過電流保護之設計與實現 77 4.11 光纖訊號傳輸電路 77 第五章 電路模擬與實測結果 79 5.1 實驗系統規格 79 5.2 模擬與實測波形 81 5.3 系統之二次側均壓(Voltage Sharing) 104 5.4 高壓脈衝開關串聯之均壓 110 5.5 零電壓切換(ZVS)之驗證 112 5.6 全橋LLC諧振轉換器之效率量測 119 第六章 結論與未來展望 120 6.1 結論 120 6.2 未來展望 121 參考文獻 122

    [1] J. Zhang, W. G. Hurley and W. H. Wölfle, "Gapped Transformer Design Methodology and Implementation for LLC Resonant Converters," IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 342-350, Jan.-Feb. 2016.
    [2] D. R. Nayanasiri, G. H. B. Foo, D. M. Vilathgamuwa and D. L. Maskell, "A Switching Control Strategy for Single- and Dual-Inductor Current-Fed Push–Pull Converters," IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 3761-3771, July 2015.
    [3] M. Borage, S. Tiwari and S. Kotaiah, "A passive auxiliary circuit achieves zero-voltage-switching in full-bridge converter over entire conversion range," IEEE Power Electronics Letters, vol. 3, no. 4, pp. 141-143, Dec. 2005.
    [4] S. Tian, F. C. Lee and Q. Li, "A Simplified Equivalent Circuit Model of Series Resonant Converter," IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3922-3931, May 2016.
    [5] D. J. Thrimawithana and U. K. Madawala, "Analysis of Split-Capacitor Push-Pull Parallel-Resonant Converter in Boost Mode," IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 359-368, Jan. 2008.
    [6] 陳威任,“應用於電漿負載具數位控制器之全橋諧振換流器”,大同大學電機工程研究所碩士論文,民國一零五年七月。
    [7] C. Fei, Q. Li and F. C. Lee, "Digital Implementation of Light-Load Efficiency Improvement for High-Frequency LLC Converters With Simplified Optimal Trajectory Control," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1850-1859, Dec. 2018.
    [8] S. Mao, J. Popovic, R. Ramabhadran and J. A. Ferreira, "Comparative study of half-bridge LCC and LLC resonant DC-DC converters for ultra-wide output power range applications," 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), Geneva, 2015, pp. 1-10.
    [9] S. M. H. Hosseini, H. R. Ghafourinam and M. H. Oshtaghi, "Modeling and Construction of Marx Impulse Generator Based on Boost Converter Pulse-Forming Network," IEEE Transactions on Plasma Science, vol. 46, no. 10, pp. 3257-3264, Oct. 2018.
    [10] R. Harchandani and P. Gorade, "Pulse forming network for Marx generator with boosting operation," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, 2017, pp. 1768-1771.
    [11] K. Liu, Y. Luo and J. Qiu, "A Repetitive High Voltage Pulse Adder Based on Solid State Switches," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 4, pp. 1076-1080, August 2009.
    [12] L. M. Redondo, H. Canacsinh and J. F. Silva, "Generalized solid-state marx modulator topology," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 4, pp. 1037-1042, August 2009.
    [13] S. Ahn, H. Ryoo, J. Gong and S. Jang, "Robust Design of a Solid-State Pulsed Power Modulator Based on Modular Stacking Structure," IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2570-2577, May 2015.
    [14] X. Chen, L. Yu, T. Jiang, H. Tian, K. Huang and J. Wang, "A High-Voltage Solid-State Switch Based on Series Connection of IGBTs for PEF Applications," IEEE Transactions on Plasma Science, vol. 45, no. 8, pp. 2328-2334, Aug. 2017.
    [15] W. Jiang, "Fast High Voltage Switching Using Stacked MOSFETs," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 14, no. 4, pp. 947-950, Aug. 2007.
    [16] T. Shao et al., "A Cascaded Microsecond-Pulse Generator for Discharge Applications," IEEE Transactions on Plasma Science, vol. 42, no. 6, pp. 1721-1728, June 2014.
    [17] T. Li and L. Parsa, "Design, Control, and Analysis of a Fault-Tolerant Soft-Switching DC–DC Converter for High-Power High-Voltage Applications," IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1094-1104, Feb. 2018.
    [18] K. Yi and G. Moon, "Novel Two-Phase Interleaved LLC Series-Resonant Converter Using a Phase of the Resonant Capacitor," IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1815-1819, May 2009.
    [19] 楊超棨,“介電質常壓電漿產生器之開發及其於質譜開發之應用”,國立中山大學機械與機電工程研究所碩士論文,民國九十九年一月。
    [20] 林學政,“利用電紡絲技術製作奈米纖維藥物傳遞系統支架”,國立交通 大學機械工程學系碩士論文,民國一百年七月。
    [21] R. Baba, C. J. Angammana, S. H. Jayaram and L. Lim, "An IGBT-Based Pulsed Power Supply for Fabricating Noncontinuous Nanofibers Using Electrospinning," IEEE Transactions on Industry Applications, vol. 49, no. 4, pp. 1801-1807, July-Aug. 2013.
    [22] K. Yatsuzuka, J. Toukairin, K. Asano and S. Aonuma, "Electrostatic chuck with a thin ceramic insulation layer for wafer holding," Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), Chicago, IL, USA, 2001, pp. 399-403 vol.1.
    [23] G. Kowshik and V. Elumalai, "High voltage power supply to electrostatic precipitator with transformer of helical winding structure," 2010 IEEE Int. Power Modulator and High Voltage Conference, Atlanta, GA, 2010, pp. 110-114.
    [24] 張展維,“脈衝電場對食品中毒病原菌殺菌之致死效率及其在諾麗果汁殺菌之應用”,東海大學食品科學研究所碩士論文,民國九十九年七月。
    [25] V. Gowrisree, K. Udayakumar and P. Gautam, "Application of High Voltage Pulses in the Preservation of Orange Juice," 2005 Annual IEEE India Conference - Indicon, Chennai, India, 2005, pp. 502-504.
    [26] J. Chen et al., "Influence of Pulse Rise Time on the Inactivation of Staphylococcus Aureus by Pulsed Electric Fields," IEEE Transactions on Plasma Science, vol. 38, no. 8, pp. 1935-1941, Aug. 2010.
    [27] 張勝華,郭一飛,鄭運鴻,“高壓脈衝電凝組合工藝處理土黴素生產廢水”,中國環境工程學報,第一卷,第七期,pp. 67-70, Jul. 2007.
    [28] A. Pokryvailo et al., "High-Power Pulsed Corona for Treatment of Pollutants in Heterogeneous Media," IEEE Transactions on Plasma Science, vol. 34, no. 5, pp. 1731-1743, Oct. 2006.
    [29] W. Cha, J. Kwon and B. Kwon, "Highly Efficient Asymmetrical PWM Full-Bridge Converter for Renewable Energy Sources," IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2945-2953, May 2016.
    [30] C. Oeder, J. Goettle and T. Duerbaum, "Novel Improved Loss Prediction for Multi-Resonant Converter Optimization Based on the First-Harmonic- Approximation," PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2014, pp. 1-7.
    [31] S. De Simone, C. Adragna, C. Spini and G. Gattavari, "Design-oriented steady-state analysis of LLC resonant converters based on FHA," International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006. Taormina, 2006, pp. 200-207.
    [32] X. Gou, K. Guo, X. Xiao, "Design of DC/DC step-up converter in PV inverter based on full-bridge LLC resonant structure," Electronic Design Engineering. vol. 23, no. 17, Sep 2015.
    [33] 劉軍,郭瑭瑭,常磊,何湘寧,“高壓變壓器寄生電容對串聯諧振變換器特性的影響”,中國電機工程學報,第三十二卷,第十五期,pp. 16-23, May 2012.
    [34] C. Yeon, J. Kim, M. Park, I. Lee and G. Moon, "Improving the Light-Load Regulation Capability of LLC Series Resonant Converter Using Impedance Analysis," IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 7056-7067, Sept. 2017.
    [35] 賴慶明,“採用初級側電流循環電路實現輕負載電壓調節之LLC串聯諧振轉換器”,技術學刊,第三十一卷,第三期,pp.231-239, 2016.
    [36] Z. Fang et al., "Energy Feedback Control of Light-Load Voltage Regulation for LLC Resonant Converter," IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4807-4819, May 2019.
    [37] Infineon, “CoolMOSTM benefits in both hard and soft switch SMPS topologies,” June 2016.
    [38] Y. Lian, D. Holliday and S. Finney, "Modular input-parallel-output-series DC/DC converter control with fault detection and redundancy," 11th IET International Conference on AC and DC Power Transmission, Birmingham, 2015, pp. 1-8.
    [39] X. Huang et al., "Large-scale photovoltaic generation system connected to HVDC grid with centralized high voltage and high power DC/DC converter," 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, 2017, pp. 1-6.
    [40] S. Mao, Y. Chen, C. Li, W. Li, J. Popovic and J. A. Ferreira, "A Coupled-Inductor based LCC Resonant Converter with the Primary-Parallel-Secondary-Series Configuration to Achieve Output-Voltage Sharing for HV Generator Applications," IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6108-6122, July 2019.
    [41] W. Chen, X. Ruan, H. Yan and C. K. Tse, "DC/DC Conversion Systems Consisting of Multiple Converter Modules: Stability, Control, and Experimental Verifications," IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1463-1474, June 2009.
    [42] C. Yeh, L. Zhang, J. Choe, C. Chen, O. Yu and J. Lai, "Light-load efficiency improvement for LLC converter with synchronous rectification in solid-state transformer application," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 2142-2147.
    [43] N. Shafiei, M. Ordonez, M. Craciun, C. Botting and M. Edington, "Burst Mode Elimination in High-Power$LLC$Resonant Battery Charger for Electric Vehicles," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1173-1188, Feb. 2016.
    [44] W. Feng, F. C. Lee, P. Mattavelli, D. Huang and C. Prasantanakorn, "LLC resonant converter burst mode control with constant burst time and optimal switching pattern," 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, 2011, pp. 6-12.
    [45] 陳存旻,“具數位控制器之脈寬可調高壓脈衝電源供應器”,國立台灣科技大學電機工程系碩士學位論文,民國一百零七年七月。
    [46] Q. Yin, X. Ren and Z. Xiong, “Application of Electricity Engineering Power Sources Based on Series MOSFETs,” Chinese Journal of Electron Devices, vol. 39, no. 2, Apr 2016.
    [47] P. Wang, F. Gao, Y. Jing, Q. Hao, K. Li and H. Zhao, "An Integrated Gate Driver with Active Delay Control Method for Series Connected SiC MOSFETs," 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, 2018, pp. 1-6.
    [48] K. Shingu and K. Wada, "Digital control based voltage balancing for series connected SiC MOSFETs under switching operations," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017, pp. 5495-5500.
    [49] 蔡宏群,“以微控器為基礎之單相交流穩壓器研製”,大同大學電機工程研究所碩士論文,民國九十八年一月。
    [50] Microchip, dsPIC33FJ64GS606 datasheet,“16-bit Digital Signal Controllers(up to 64 KB Flash and 9 KB SRAM) with High-Speed PWM, ADC, and Comparators”,2009-2012.
    [51] Microchip, “Assembler/Linker/Librarian User's Guide,” 2005.
    [52] G. M. Ponzo, G. Capponi, P. Scalia and V. Boscaino, "An improved Flyback converter," 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Pattaya, Chonburi, 2009, pp. 310-313.
    [53] J. Zhang, W. G. Hurley and W. H. Wölfle, "Gapped Transformer Design Methodology and Implementation for LLC Resonant Converters," IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 342-350, Jan.-Feb. 2016.
    [54] 美台磁材有限公司,ETD-6554,“ETD, EER, EC, EI, EEF (EFD) EFC CORES A&T”
    [55] 趙志英,龔春英,秦海鴻,“高頻變壓器分佈電容的影響因素分析”,中國電機工程學報,第二十八卷,第九期,pp. 55-60, Mar 2008.
    [56] AVAGO, HCNR201, “High-Linearity Analog Optocouplers Allows fl exible circuit design” 2005-2011.
    [57] IXYS, IXTH1N450HV, “High Voltage Power MOSFET” 2014.
    [58] SILICON LABS, Si8233, “0.5 AND 4.0 AMP ISO DRIVERS (2.5 AND 5 KVRMS),” 2015.
    [59] TOSHIBA, TLP250H, “Buffer logic type (totem pole output)” 2012.
    [60] Microchip, “Section 17. 10-bit Analog-to-Digital Converter (ADC),” 2007-2011.
    [61] AVAGO, HFBR-0500Z Series, The Versatile Fiber Optic Connection Datasheet.

    無法下載圖示 全文公開日期 2024/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE