簡易檢索 / 詳目顯示

研究生: 陳玠綸
Chieh-Lun Chen
論文名稱: 諧振頻率追蹤的串聯諧振轉換器研製
Development of Series Resonant Converter with Resonant Frequency Tracking
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 林長華
Chang-Hua Lin
林法正
Faa-Jeng Lin
顏吉永
Chi-Yung Yen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 75
中文關鍵詞: 串聯諧振轉換器降壓轉換器昇壓轉換器
外文關鍵詞: series resonant converter, buck converter, boost converter
相關次數: 點閱:290下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在完成具諧振頻率追蹤的全橋式串聯諧振轉換器,使用電容串聯諧振電路,搭配高頻變壓器的電感耦合模式,以設計串聯諧振轉換器。諧振轉換器的切換頻率,可由數位控制器設定。本文的串聯電容及變壓器固定,由於串聯諧振轉換器的電路諧振頻率與負載阻抗有關,將影響轉換器的功率轉移。輸入電壓及電流計算輸入功率,採用不同負載功率最大化作切換頻率設定,已完成諧振頻率追蹤。另外,在輸入電壓較高的場合,採用串聯諧振轉換器結合降壓轉換器;在輸入電壓較低的場合,採用昇壓轉換器結合串聯諧振轉換器,皆能維持輸出電壓為固定。
    本系統以德州儀器公司出產的32位元之數位訊號處理器TMS320F280049作為控制核心,採用數位化方式作控制,由C語言完成較繁瑣的控制策略,大幅減少硬體電路複雜度。本文已完成具諧振頻率追蹤之串聯諧振轉換器,輸入電壓為36V,輸出電壓為26.8V〜44.6V,具頻率追蹤串聯諧振轉換器其在輸出功率範圍為202.9 W〜359.1 W,其諧振頻率範圍為20kHz至40kHz,最高效率為95.3%,在輸出功率為202.9W,其諧振頻率為25.4 kHz。與降壓轉換器結合其輸入電壓為36V,不同負載輸出電壓維持24V。與昇壓轉換器結合,其輸入電壓為24V,不同負載輸出電壓為24V。本文可驗證具諧振頻率追蹤的諧振轉換器,結合降壓轉換器或昇壓轉換器,在不同輸入電壓場合,皆能維持固定電壓輸出。


    The major objective of the study aimed to devise and complete a full-bridge series resonant converter with resonant frequency tracking by using a capacitive series resonant circuit with an inductive coupling mode of a high frequency transformer. The frequency of the resonant converter could be set by the digital controller. In the study, the series capacitor and transformer were fixed because the circuit resonance frequency of the series resonant converter was related to load impedance, which would affect the power transfer of the converter. The input voltage and current were used to calculate the input power, and maximized different loads were used to the frequency setting of the resonant power supply, and the resonant frequency tracking was completed. To maintain a fixed output voltage, a series resonant converter combined with a buck converter was used in a higher input voltage condition while a boost converter combined with a series resonant converter was applied in a lower input voltage condition.
    The core control of the system, the 32-bit digital signal processor TMS320F280049 produced by Texas Instruments, adopted the digital control as well as C language to complete more complicated control strategies, which greatly reduced the complexity of hardware circuits. The input voltage of the series resonant converter with resonant frequency tracking completed in the study was 36V while the output voltage was 26.8V~44.6V. Its output power ranged from 202.9 W to 359.1 W, its resonant frequency ranged from 20kHz to 40kHz, the highest efficiency was 95.3%, the output power was 202.9W, and its resonant frequency was 25.4 kHz. When combined with the buck converter, the input voltage was 36V, and the output voltage of different loads was maintained at 24V. When combined with the boost converter, its input voltage was 24V, the output voltage of different loads was 24V. This study verified the series resonant converter with resonant frequency tracking could maintain a fixed voltage output in different input voltage situations either with the buck converter or boost converter.

    摘要 I Abstract II 誌謝 III 目錄. IV 圖表索引 VII 符號索引 X 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻探討 2 1-3 系統架構及本文特色 3 1-4 本文大綱 5 第二章 串聯諧振轉換器的控制策略 6 2-1 前言 6 2-2 串聯諧振轉換器分析 6 2-2-1 高頻變壓器模式 7 2-2-2 串聯諧振電容設計 9 2-2-3 諧振轉換器的品質因數分析 13 2-3 諧振頻率追蹤控制策略 14 2-3-1 串聯諧振轉換器的切換頻率控制 15 2-4 輸入功率最大化諧振頻率追蹤控制串聯諧振轉換器 16 2-5 具諧振頻率追蹤實測 19 2-6結語 22 第三章 直流-直流轉換器及其控制降壓轉換器及昇壓轉換器 23 3-1 前言 23 3-2 雙臂型降壓轉換器電力電路及模式 23 3-3 降壓轉換器的電壓閉迴路控制 25 3-4 降壓轉換器實測 28 3-5 昇壓轉換器電力電路及模式 29 3-6 昇壓轉換器的電壓閉迴路控制 30 3-7 昇壓轉換器實測 34 3-8 結語 34 第四章 系統整合的實測 35 4-1 前言 35 4-2 數位控制處理器之介面電路 37 4-3 串聯諧振轉換器結合降壓轉換器實測 39 4-4 昇壓轉換器結合串聯諧振轉換器實測 41 4-5 結語 43 第五章 結論與建議 44 5-1 結論 44 5-2 建議 44 參考文獻 45 附錄A 硬體電路 48 A-1-1 功率級開關元件閘極驅動電路 48 A-1-2 輸入及輸出電壓回授電路 49 A-1-3 輸入及輸出電流回授電路 50 A-1-4 同步整流電路 51 A-1-5 藍牙模組通訊電路 51 附錄B 介面電路 52 B-1 數位控制處理器之介面電路 52 附錄C 相關公式推導 54

    [1] 麥綺明,“非接觸式感應充電技術應用於油電混合車充電槳之研究”,國立成功大學電機工程學系碩士論文,民國九十八年。
    [2] 張海文,“兼具高功因及高效率之非接觸式直流電源供應器”,國立彰化師範大學電機工程學系碩士論文,民國九十九年。
    [3] 陳世源,“數位式LLC諧振轉換器之 同步整流控制方法與諧振頻率追蹤技術”,國立臺北科技大學電機工程學系碩士論文,民國一百零四年。
    [4] 潘力維,“具同步整流器之非接觸式全橋式諧振轉換器研製”,國立臺灣科技大學電機工程學系碩士論文,民國一百一十年。
    [5] 藍鴻明,“混合燃料電池及鋰電池供電系統研製”,國立臺灣科技大學電機工程學系碩士論文,民國九十九年。
    [6] 陳讚,“基於DSP控制之交錯式降壓型功率因數修正器”,國立臺灣科技大學電機工程學系碩士論文,民國一百零二年。
    [7] 劉錫泰,“三相交錯式升壓型功率因數修正器研製”,國立臺灣科技大學電機工程學系碩士論文,民國九十八年。
    [8] 黃柏嘉,“用於功率因數修正之交錯式倍壓升壓型轉換器之研製”,國立中山大學電機工程學系碩士論文,民國一百零五年。
    [9] A. Sagar, H. Sugali and S. Bhisade, "Design and Analysis of Robust Interleaved Buck Converter with Minimal Ripple Current," International Conference for Emerging Technology (INCET), pp. 1-5,2020.
    [10] A. K. Teeula and S. Kaboli, "A Reliable and Fast Response Buck Converter Based on Interleaved Converter," Iranian Conference on Electrical Engineering (ICEE), pp. 804-807,2019.
    [11] C. Wang and H. Tian, "Research on Control Strategy of Interleaved BUCK Circuit Based on BP Neural Network Model," IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 2009-2013, 2019.
    [12] D. J. Cha, J. E. Baek, Y. M. Cho, K. C. Ko and W. C. Lee, "Development of Interleaved Buck Converter Using Soft-Switching for High Curren Applications " IEEE International Power Modulator and High Voltage Conference (IPMHVC), pp. 623-626, 2014.
    [13] Cheng.Tao Tsai and Chih.Lung Shen, "Interleaved Soft-Switching Buck Converter with Coupled Inductors", IEEE International Conference on Sustainable Energy Technologies, pp. 877-882, 2008.
    [14] H. Adachi, Y. Kosode, A. Kawamura, H. Obara, I. Yuzurihara and Y. Hosoyamada, "Half Cycle Iref Deadbeat Control of Two-phase Interleaved DC-DC Buck Converter for High/Low Voltage Pulse Generation," European Conference on Power Electronics and Applications (EPE'18 ECCE Europe), pp. P.1-P.8. 2018
    [15] M. Veerachary and M. N. V. Bhavana, "Analysis and Design of Zero-Voltage Switching High Gain Interleaved Boost Converter," IEEE Power India International Conference (PIICON), pp. 1-6, 2014.
    [16] A. Tiwari, O. Jaga and S. S. Soni, "Sliding Mode Controller Based Interleaved Boost Converter for Fuel Cell System," Recent Developments in Control, Automation & Power Engineering (RDCAPE), pp. 516-520, 2017.
    [17] M. Veerachary, "Switched L-C Cell Based Interleaved Boost Converter," IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-5,2020.
    [18] B. M. Alharbi, M. A. Alhomim and R. A. McCann, "A High Voltage Ratio Three-stage Cascaded Interleaved Boost Converters for PV Application," IEEE Power and Energy Conference at Illinois (PECI), pp. 1-5, 2020.
    [19] M. A. Devi, K. Valarmathi and R. Mahendran, "Ripple Current Reduction in Interleaved Boost Converter by Using Advanced PWM Techniques," IEEE International Conference on Advanced Communications, Control and Computing Technologies, pp. 115-119, 2014.
    [20] A. Thiyagarajan, S. G. Praveen Kumar and A. Nandini, "Analysis and Comparison of Conventional and Interleaved DC/DC Boost Converter,"Second International Conference on Current Trends In Engineering and Technology - ICCTET, pp. 198-205, 2014.
    [21] R. Karthikeyan and G. N. S. Amreiss, "PV Based Interleaved Boost Converter for Pumping Applications," International Conference on Intelligent and Advanced System (ICIAS), pp. 1-4, 2018.
    [22] N. Coruh, S. Urgun, T. Erfidan and S. Ozturk, "A Simple and Efficient Implemantation of Interleaved Boost Converter," IEEE Conference on Industrial Electronics and Applications, pp. 2364-2368, 2011.

    無法下載圖示 全文公開日期 2032/07/13 (校內網路)
    全文公開日期 2032/07/13 (校外網路)
    全文公開日期 2027/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE