簡易檢索 / 詳目顯示

研究生: 劉建村
CHIEN-TSUN LIU
論文名稱: 六相永磁式同步電動機設計及故障後控制策略
Design and Post-Fault Control Strategy of Six-Phase Permanent-Magnet Synchronous Motors
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
none
林法正
none
劉傳聖
none
連國龍
Kuo-Lung Lian
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 永磁式同步電動機十二臂型六相變流器故障控制
外文關鍵詞: twelve-legs
相關次數: 點閱:309下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製十二臂六相變流器之六相永磁式同步電動機的驅動系統。藉由內轉型之永磁式同步電動機的磁路及性能計算,並配合有限元素電磁場解析套裝軟體對齒槽及磁石作最佳化設計,降低反電動勢的總諧波失真率,以減少運轉時的轉矩抖動。六相永磁式同步電動機選用26極24槽之結構,額定轉速為450rpm、額定功率為1kW,感應電動勢相電壓峰值為71.07V,總諧波失真率5.02%,每相電阻為0.32Ω,交軸電感為5.7 mH,直軸電感為6.6mH。
    電力電路採用十二臂六相變流器,每相繞組分接於兩臂上,形成6個單相直流-交流功率轉換器,其驅動控制採用單極性正弦脈波寬度調變,可提升系統直流鏈電壓使用率。六相永磁式電動機其中abc相或xyz相繞組中有一相故障,可以由另外二相繞組降載持續運轉,增加系統之可靠性。六相永磁式同步電動機故障控制策略藉由回授其六相電流以判斷系統故障之繞組,使系統能修正未故障之兩相電流,令未故障之兩相電流角度相差 度相位,以降低脈動轉矩,使其運轉之轉矩更為平滑穩定。本文以軟體Matlab/Simulink分析十二臂型六相變頻器與驅控六相永磁式同步電動機之系統,並完成十二臂六相變頻器之六相永磁式同步電動機驅動系統。實體製作及測試顯示本文之系統不僅可以在六相正常運轉,亦可以在abc繞組及xyz繞組的任一單相故障而作故障後的控制,由實測結果驗證控制策略的可行性。


    This thesis presents the design and implementation of control system of six-phase permanent-magnet synchronous motor (PMSM) with twelve-leg six-phase inverter. Using performance calculation as well as finite element analysis, the optimum shapes of magnets, stator teeth and slots are obtained with smaller torque ripple and lower harmonic content in the back electromotive fore (EMF). A 26-pole, 24-slot six-phase PMSM is chosen. Rated speed is 450rpm. Rated power is 1kW. Peak value and total harmonic distortion of EMF are 71.07V and 5.02%, respectively. Per-phase resistance is 0.32Ω. Direct-axis and quadrature-axis synchronous inductances are 6.6mH and 5.7mH correspondingly.
    The power circuit uses twelve-leg six-phase inverter. Connecting each winding to two separately controlling legs yields six-phase dc-ac power converter. The inverter control strategy uses unipolar voltage switching method to raise the utilization factor of dc-link voltage. When a winding of six-phase PMSM breaks down, the associated load may have to be reduced to retain continuous running and increase the reliability of the system. In the fault tolerance control strategy, the current of PMSM is used to determine which winding is broken, so that the other two winding currents can be corrected to result in a 60-degree angle difference, thereby reduces torque pulsation. In this thesis, Matlab/Simulink is used to simulate the proposed PMSM system including twelve-leg six-phase inverter and control system of six-phase PMSM. A prototype of control system of six-phase PMSM motor is built. Normal as well as post-fault operations are obtained as expected. The proposed system performance is thus verified experimentally.

    目錄 中文摘要I 英文摘要II 誌謝III 目 錄IV 符號索引VI 圖表索引IX 第一章 緒論1 1-1研究動機及目的1 1-2文獻探討1 1-3系統架構及本文特色7 1-4本文大綱8 第二章 六相永磁式同步電動機設計及量測10 2-1前言10 2-2永久磁石及鐵心材質10 2-3永磁式同步電動機的磁路及性能計算12 2-4六相永磁式同步電動機之設計21 2-5六相永磁式同步電動機的分析27 2-6六相永磁式同步電動機的轉矩分析32 2-7六相永磁式同步電動機的自動量測系統34 2-8六相永磁式同步電動機的實測結果37 2-9結語40 第三章 六相永磁式同步電動機的向量控制策略42 3-1前言42 3-2十二臂型六相變頻器之SPWM工作原理42 3-3六臂六相變頻器之交直軸電流閉迴路控制策略45 3-4十二臂六相變頻器之交直零軸電流閉迴路控制策略48 3-5六相永磁式同步電動機向量控制模擬51 3-6結語52 第四章 六相永磁式同步電動機的故障後控制策略62 4-1前言62 4-2六相永磁同步電動機之故障判斷62 4-3六相永磁同步電動機之定子繞組電流的控制策66 4-4六相永磁式同步電動機故障後之轉速電流閉迴路控制策略69 4-5模擬結果75 4-6結語75 第五章 實測結果78 5-1前言78 5-2硬體架構78 5-3實測結果80 5-4結語81 第六章 結論及建議90 6-1結論90 6-2建議91 參考文獻92 附錄A 六相永磁式同步電動機的數學模式97 作者簡介103

    參考文獻
    [1]R. Wrobel and P.H. Mellor, “Design Considerations of a Direct Drive Brushless Machine With Concentrated Windings,” IEEE Transactions on Energy Conversion, vol. 23, pp.1 – 8 , 2008.
    [2]K. T Chau, C. C. Chan and C. Lin, “Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 55, pp.2246 – 2257, 2008.
    [3]F. P. Lopes, P.S. Oliveira, L.P. and R.E. Araujo, “An electric wheelchair as a tool for motivating students in power electronics,” Electrical Drives on Power Electronics, pp. 481 – 485, 2008.
    [4]Y. Wang, H. Zhang and S. Ding, “Computer-aided design and experiment research of new type permanent magnet synchronous motor,” Control Conference, 2008. CCC 2008. 27th Chinese, pp. 216 – 220, 2008.
    [5]K. T. Chau, D. Zhang, J.Z. Jiang, Chunhua Lin and Y. Zhang, “Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles,” IEEE Transactions on Magnetics, vol. 43, pp.2504 – 2506, 2007.
    [6]Y. Dai, L. Song and S. Chi, “Development of PMSM drives for hybrid electric car applications,” IEEE Transactions on Maqnetics, vol. 43, pp. 434 – 437, 2007.
    [7]王俊超,六相永磁式同步電動機驅動器之分析及設計,國立台灣科技大學電機研究所碩士論文,民國九十四年。
    [8]許尚文,六相永磁式同步電動機之分析及設計,國立台灣科技大學電機研究所碩士論文,民國九十五年。
    [9]林振德,具能量回收功能之六相永磁式同步電動機驅動器研製,國立台灣科技大學電機研究所碩士論文,民國九十七年。
    [10]D. G. Dorrell, “Design Requirements for Brushless Permanent Magnet Generators for Use in Small Renewable Energy Systems,” 33rd Annual Conference of the IEEE Industrial Electronics Society, pp.216-221, 2007.
    [11]J. Rizk and M. Nagrial, “Design of Permanent-magnet Generators for Wind Turbines,” IEEE Power Electronics and Motion Control Conference, vol. 1, no. 2, pp. 208-212, 2000.

    [12]Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part I: Open-circuit Field,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.124 - 135, 1993.
    [13]Z. Q. Zhu, and D. Howe, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part II: Armature-Reaction Field,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.136 - 142, 1993.
    [14]Z. Q. Zhu, and D. Howe, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part III: Effect of Stator Slotting,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.143 - 151, 1993.
    [15]Z. Q. Zhu, and D. Howe, “Instantaneous Magnetic Field Distribution in Permanent Magnet Brushless DC Motors, Part IV: Magnetic Field on Load,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.152 - 158, 1993.
    [16]U. Kim, and D. K. Lieu, “Magnetic Field Calculation in Permanent Magnet Motors with Rotor Eccentricity: With Slotting Effect Considered,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp.2253-2266, 1998.
    [17]U. Kim, and D. K. Lieu, “Magnetic Field Calculation in Permanent Magnet Motors with Rotor Eccentricity: Without Slotting Effect,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp.2243 - 2252, 1998.
    [18]P. Zheng, J. Zhao, J. Han, J. Wang, Z. Yao and R. Liu, “Optimization of the Magnetic Pole Shape of a Permanent-Magnet Synchronous Motor,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp.2531 - 2533, 2007.
    [19]B. Štumberger, G. Štumbergera, M. Hadžiselimovića, A. Hamlera, V. Goričana, M. Jesenika and Mladen Trlepa, “Comparison of Torque Capability of Three-phase Permanent Magnet Synchronous Motors with Different Permanent Magnet Arrangement,” Journal of Magnetism and Magnetic Materials, vol. 316, no. 2, pp.e261 - e264, 2007.

    [20]Z. Q. Zhu, Z. P. Xia, and D. Howe, “Comparison of Halbach Magnetized Brushless Machines Based on Discrete Magnet Segments or a Single Ring Magnet,” IEEE Transactions on Magnetics, vol. 38, no. 5, pp.2997 - 2999, 2002.
    [21]E. Muljadi and J. Green, “Cogging Torque Reduction in a Permanent Magnet Wind Turbine Generator,” Proceedings of the 21st American Society of mechanical engineers wind energy symposium, 2002.
    [22]Z. Q. Zhu, S. Ruangsinchaiwanich, D. Ishak, and D. Howe, “Analysis of Cogging Torque in Brushless Machines Having Nonuniformly Distributed Stator Slots and Stepped Rotor Magnets,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp.3910 - 3912, 2005.
    [23]Z. Q. Zhu, and D. Howe, “Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines,” IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp.407 - 412, 2000.
    [24]Z. Q. Zhu, S. Ruangsinchaiwanich, Y.Chen and D. Howe, “Evaluation of Superposition Technique for Calculating Cogging Torque in Permanent-Magnet Brushless Machines,” IEEE Transactions on Magnetics, vol. 42, no. 5, pp.1597 - 1603, 2006.
    [25]C. S. Koh, H. S. Yoon, K. W. Nam and H. S. Choi , “Magnetic Pole Shape Optimization of Permanent Magnet Motor for Reduction of Cogging Torque,” IEEE Transactions on Magnetics, vol. 33, no. 2, pp.1822 - 1827, 1997.

    [26]C. S. Koh and J.-S. Seol, “New Cogging-Torque Reduction Method for Brushless Permanent-Magnet Motors,” IEEE Transactions on Magnetics, vol. 39, no. 6, pp.3503 - 3506, 2003.
    [27]Z. Q. Zhu and D. Howe, “Analytical Prediction of the Cogging Torque in Radial-field Permanent Magnet brushless Motors” IEEE Transactions on Magnetics, vol. 28, no. 2, pp.1371 - 1374, 1992.
    [28]S. A. Saied, K. Abbaszadeh, S. Hemmati and M. Fadaie, “A New Approach to Cogging Torque Reduction in Surface-Mounted Permanent-Magnet Motors,” European Journal of Scientific Research, vol. 26, no. 4, pp.499-509, 2009.

    [29]S. E. Skaar, O. Krovel and R. Nilssen, “Distribution, Coil-span and Winding Factors for PM Machines with Concentrated Windings”, International Conference Electrical Machines, 2006.
    [30]Z. Q. Zhu, D. Howe and J. K. Mitchell, “Magnetic Field Analysis and Inductances of Brushless DC Machines with Surface-Mounted Magnets and Non-Overlapping Stator Windings,” IEEE Transactions on Magnetics, vol. 31, no. 3, pp.2115 - 2118, 1995.
    [31]D. Ishak, Z. Q. Zhu and D. Howe, “Comparison of PM Brushless Motors, Having Either All Teeth or Alternate Teeth Wound,” IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 95 – 103, 2006.
    [32]D. Sun and J. Meng, “Research on Fault Tolerant Inverter based Permanent Magnet Synchronous Motor Direct Torque Control Drives,” IEEE Conference on Industrial Electronics and Applications, pp. 1-5, 2006.
    [33]C. Quinn and N. Mohan, “Active Filtering of Harmonic Currents in Three-Phase, Four-Wire Systems with Three-Phase and Single-Phase Nonlinear Loads,” Conference Proceedings Applied Power Electronics Conference and Exposition, pp. 829-836, 1992
    [34]M. Ryan, R. De Doncker and R. Lorenz, “Decoupled Control of a 4-Leg Inverter via a New 4×4 Transformation Matrix,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 187-192, 1999.
    [35]T. H. Liu, J. R. Fu and T. A. Lipo, “A Strategy for Improving Reliability of Field-Oriented Controlled Induction Motor Drives,” IEEE Transactions on Industry Applications, vol. 29, pp. 910–918, 1993.
    [36]S. Bolognani, M. Zordan and M. Zigliotto, “Experimental Fault-Tolerant Control of a PMSM Drive,” IEEE Transactions on Industrial Electronics, vol. 47, no. 1, pp. 1134–1141, 2000.
    [37]M. Naidu, S. Gopalakrishnan and T. Nehl, “Fault-Tolerant Permanent Magnet Motor Drive Topologies for Automotive X-By-Wire Systems,” IEEE Industry Applications Society Annual Conference Record, pp. 1-8, 2008.
    [38]唐任遠等著,現代永磁電機理論與設計,機械工業出版社, 1997年,北京。
    [39]A.E. Fitzgerald, C. Kingsley Jr., and S.D. Umans, Electric Machinery, 6th. Edition, McGraw-Hill, 2003.
    [40]http://www.csc.com.tw/index.asp,中國鋼鐵公司。
    [41]林君達,低噪音風能轉換系統用永磁式同步發電機之設計及控制,國立台灣科技大學電機研究所碩士論文,民國九十八年。
    [42]魏孝哲,六臂型三相變流器之永磁式同步電動機驅動器之故障後控制策略,國立台灣科技大學電機研究所碩士論文,民國九十八年。

    無法下載圖示 全文公開日期 2015/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE