簡易檢索 / 詳目顯示

研究生: 陳立洋
Li-Yang Chen
論文名稱: 具雙向功率轉換之市電併網型三相永磁式 同步電動機驅動器設計
Design of Grid-connected Three-phase Permanent-magnet Synchronous Motor Drives with Bidirectional Power Conversion
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
劉傳聖
Chuan-Sheng Liu
林長華
Chang-Hua Lin
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 127
中文關鍵詞: 三相換流器雙向功率轉換市電併網雙二階通用積分器
外文關鍵詞: three-phase inverter, bidirectional power conversion, grid-connected operation, dual second-order generalized integrator
相關次數: 點閱:173下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計具雙向功率轉換之市電併網型三相永磁式同步電動機驅動器。當系統於發電機模式運轉時,不須額外剎車電阻,即可將機械能轉化成電能回饋至市電,大幅降低電能損耗。系統含具市電併網功能與驅動電動機之市電側與電機側二個雙向的三相功率轉換器:市電側功率轉換器採用市電的電壓向量控制以控制市電側電流及輸出直流電壓,並利用同步旋轉座標系統下之雙二階通用積分器估測市電電壓角位置以提高市電側的功因;電機側三相功率轉換器則採用磁場導向控制,以電流偵測元件回授電動機的電流,並使用解角器回授同步電動機轉軸之角位置及轉速,完成轉速及電流閉迴路控制,提高驅動器之性能。
    本研究以Matlab/Simulink進行整體的模擬,俾為實作之依據。本文系統之前、後級功率轉換器皆使用德州儀器公司出產的數位信號處理器TMS320F28069為控制核心,其控制策略皆由軟體程式完成,故可大幅減少電路元件。當本文之系統在1500 rpm、輸出機械功率為2.22 kW之電動機模式運轉時,市電側電流峰值與總諧波失真率分別為10.1 A及3.37%,電動機輸入端相電流峰值與總諧波失真率則分別為20.3 A及3.93%,市電側整流器、電機側換流器與電動機效率分別為98%, 98% 及 85%, 市電側至電動機輸出側之整體效率為82%。另者,在轉速為1500 rpm,機械輸入功率為2.44 kW之發電機模式運轉時,發電機輸入端之電流峰值與總諧波失真率分別為16.0 A及3.75%,市電側電流峰值與總諧波失真率分別為7.2 A及4.57%,發電機、電機側整流器與市電側換流器效率分別為82%、98%及97%,發電機輸入端至市電側之整體效率為80%。實測結果驗證了本文系統之可行性。


    This thesis aims to design grid-connected three-phase permanent-magnet synchronous motor (PMSM) drives with bidirectional power conversion. Energy recovery feature is provided for loss reduction in generator mode without additional breaking resistor. The system includes bidirectional three-phase grid- and motor-side power converters. The former uses grid voltage vector for input current control and dc output voltage supply. Meanwhile, a dual second-order generalized integrator under synchronous frame is adopted to estimate the phase angle of grid voltage for power-factor enhancement. Whereas, the latter drives PMSM with field-oriented control using resolver and current sensors to feed back rotor position, speed as well as phase current for speed and current closed-loop controls in order to improve the performance of the proposed drive.
    System simulation is given by using Matlab/Simulink. A 32-bit digital signal processor, TMS320F28069, is adopted as the control core. Since control strategies are mostly implemented by software program, circuit components are reduced largely. Experimental results show that when the three-phase PMSM is operated under motor mode at 1500 rpm, the mechanical power output from the PMSM is 2.22 kW with the peak grid phase current and total harmonic distortion (THD) of 10.1 A and 3.37%, respectively, the corresponding values on the motor input are 20.3 A and 3.93%. The efficiencies of grid-side rectifier, motor-side inverter and PMSM are 98%, 98% and 85%, respectively, resulting in the overall efficiency of 82%. While in generator mode at 1500 rpm, the mechanical power input to the permanent-magnet synchronous generator (PMSG) is 2.44 kW, the peak generator phase current and its THD are 16.0 A and 3.75%, respectively. The corresponding values on the grid side are 7.2 A and 4.57%. The efficiencies of PMSG, motor-side rectifier and grid-side inverter are 82%, 98% and 97%, respectively, yielding the overall efficiency of 80%. The feasibility of the proposed system is verified experimentally.

    摘要 I Abstract II 誌謝 IV 目錄 V 符號索引 VIII 圖表索引 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 系統架構及本文特色 4 1.4 本文大綱 5 第二章 市電側換流器的分析及控制 7 2.1 前言 7 2.2 市電側換流器等效數學模式 7 2.3 市電側電壓角位置的估測 9 2.3.1 電壓角位置的估測原理 9 2.3.2 具前置濾波器之角位置估測 12 2.3.3 雙二階通用積分器之同步旋轉座標系統之電壓角位置估測 15 2.3.4 角位置估測之實測比較 19 2.3.5 數位系統之時間延遲之補償 28 2.4 市電側換流器之直流側電壓及市電側電流控制策略 30 2.5 市電側換流器模擬與實測 33 2.5.1 提供功率模式下之市電側換流器 33 2.5.2 能量回收模式下之市電側換流器 38 2.6 結語 43 第三章 電機側三相換流器之分析及控制與雙向功率轉換之永磁式同步電機驅動系統整合 44 3.1 前言 44 3.2 座標系統轉換 44 3.3 三相永磁式同步電機驅動器之控制策略 45 3.3.1 三相永磁式同步電機的電壓及轉矩方程式 45 3.3.2 三相永磁式同步電機操作模式 46 3.4 雙向功率轉換之永磁式同步電機驅動系統的整合 48 3.5 結語 55 第四章 硬體與軟體的規劃及實測 56 4.1 前言 56 4.2 硬體電路實體製作 56 4.2.1 數位訊號處理器之介面電路 56 4.2.2 繼電器控制電路 61 4.2.3 交流電壓回授電路 61 4.2.4 直流電壓回授電路 62 4.2.5 電流回授電路 63 4.2.6 閘極驅動器電路 64 4.2.7 直流鏈電容設計 65 4.3 硬體電路的校正 66 4.3.1 三相交流電壓的回授電路校正 66 4.3.2 三相交流電流的回授電路校正 67 4.3.3 直流電壓及電流的量測及校正 67 4.3.4 解角器及解角器對數位轉換器器之量測及校正 69 4.4 軟體規劃 70 4.4.1 市電側換流器繼電器動作流程規劃 70 4.4.2 市電側換流器直流側電壓控制之程式規劃 72 4.4.3 市電側換流器市電角位置計算流程規劃 74 4.4.4 永磁式同步機控制策略之程式規劃 75 4.4.5 系統整合之實驗流程規劃 77 4.5 系統整合實測 79 4.6 結語 86 第五章 結論與建議 87 5.1 結論 87 5.2 建議 88 參考文獻 89 附錄A 實作平台之規格 93 附錄B 模擬程式 95 附錄C IEEE 519-2014規範 102 附錄D 國內外分散型發電設備在三相配電系統規範 102 附錄E 系統實體照片 104

    [1] B. K. Bose, Modern Power Electronic and AC Drives, Beijing:Machine Industry Publishing House, 2003.
    [2] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A Review of Three-phase Improved Power Quality AC–DC Converters”, IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 641-660, 2004.
    [3] J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, J. Pontt and P. Lezana, “PWM Regenerative Rectifiers: State of the Art”, IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 5-22, 2005.
    [4] Y. Chen and X. M. Jin, “Modeling and Control of Three-phase Voltage Source PWM Rectifier”, Proceedings of IEEE International Power Electronicsand Motion Control Conference, vol. 3, pp. 1-4, 2006.
    [5] Y. Chen and K. Smedley, “Three-phase Boost-type Grid-connected Inverter”, IEEE Transactions on Industrial Electronics, vol. 23, no. 5, pp.2301-2309, 2008.
    [6] M. P. Kazmierkowski and L. Malesani,“Current Control Techniques for Three-phase Voltage Source PWM Converters: A Survey,” IEEE Transactions on Industry Applications, vol. 45, no. 5, pp. 691-703, 1998.
    [7] “IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems,” IEEE Std 1547-2003, 2003.
    [8] S. J. Lee, J.K.Kang, S. K. Sul “A New Phase Detecting Method for Power Conversion Systems Considering Distorted Conditions in Power System”, Conference Record of IEEE IAS, Phoenix, AZ, pp. 2167-2172, 1999.
    [9] 陳誼綸,“應用DSP實現混合式孤島偵測技術”, 明志科技大學電機工程研究所碩士論文,2012,頁49-50。
    [10] V. Kaura and V. Blasco, “Operation of a Phase Locked Loop System under Distorted Utility Conditions,” IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 58–63, 1997.
    [11] X. M. Yuan, W. Merk, H. Stemmler, J. Allmeling, "Stationary-frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-state Error for Current Harmonics of Concern under Unbalanced and Distorted Operating Conditions", IEEE Transactions on Industry Applications, vol. 38, pp. 523-532, 2002.
    [12] L. R. Limongi, R. I. Bojoi, C. Pica, F. Profumo, A. Tenconi, "Analysis and Comparison of Phase Locked Loop Techniques for Grid Utility Applications", Proceedings. IEEE Power Conversion Conference, pp. 674-681, 2007.
    [13] Q. Huang, R. Kaushik, "An Improved Delayed Signal Cancellation PLL for Fast Grid Synchronization under Distorted and Unbalanced Grid Condition", IEEE Transactions on Industry Applications. 2017.
    [14] 阮新波、王學華、潘東華等著,LCL型併網逆變器的控制技術,北京:科學出版社,民國一零四年。
    [15] M. Karimi-Ghartemani, M. R. Iravani, "A Method for Synchronization of Power Electronic Converters in Polluted and Variable-frequency Environments", IEEE Transactions Power System, vol. 19, pp. 1263-1270, 2004.
    [16] G. Siyu, M. Barnes, "Phase-locked Loop for AC Systems: Analyses and Comparisons", Power Electronics Machines and Drives (PEMD 2012) 6th IET International Conference on, pp. 1-6, 27–29 2012.
    [17] P. Rodríguez, J. Pou, J. Bergas, "Decoupled Double Synchronous Reference Frame PLL for Power Converters Control", IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 584-592, 2007.
    [18] 羊宣銘,“電網同步之鎖相迴路控制器的分析與設計”,國立交通大學電控工程研究所碩士論文,2013。
    [19] B. K. Bose and H. A. Sutherland, "A Microcomputer-based Drive Control System of an Electric Vehicle,' in Proceedings of Industrial Conference. on Numerical Control of Electrical Machines (CONUMEL-80) (Lyon, France), pp. 50-59, 1980.
    [20] T. Rekioua, F. Tabar Meibody, R. Le Doeuff, "New Approach for the Field-oriented Control of Brushless Synchronous Permanent-magnet Machines", Fourth International Conference on Power Electronics and Variable-Speed Drives, no. 324, pp. 46-50, 1990.
    [21] 王志賢,“雙向功率轉換之永磁式同步電動機驅動器之研製”,國立台灣科技大學電機工程研究所碩士論文,1999。
    [22] 張嘉煙,“雙向功率轉換之永磁式同步電動機驅動器研製”,國立台灣科技大學電機工程研究所碩士論文,2007。
    [23] 龔振瑋,“電壓估測法於三相不平衡系統變流器之應用”,國立台灣科技大學電機工程研究所碩士論文,2014。
    [24] 李宗翰,“11kW雙向交流-直流轉換器之研製”,國立台灣科技大學電子工程研究所碩士論文,2014。
    [25] 李建霖,“具能量回收之動力計用的雙向三相感應電機驅動器研製”,國立台灣科技大學電機工程研究所碩士論文,2017。
    [26] J. A. Pecas Lopes; C. L. Moreira; A. G. Madureira, “Defining control strategies for analysing microgrids islanded operation,” IEEE Russia Power Tech, pp. 1–7, 2005.
    [27] M. Ghofrani; A. Arabali; M. Etezadi-Amoli; M. S. Fadali, “Energy Storage Application for Performance Enhancement of Wind Integration,” IEEE Transactions on Power Systems, vol. 28, pp. 4803–4811, 2013.
    [28] C. L. Fortescue, "Method of symmetrical co-ordinates applied to the solution of polyphase networks ", Proceedings 34th Annual Convention of AIEE , pp. 1027-1140,1918.
    [29] W. Lyon, Application of the Method of Symmetrical Components, New York:McGraw Hill Professional, 1937.
    [30] Generating Pants Connection the Medium-voltage Network. BDEW Technical Guideline,2008.
    [31] X. Zhang; J. W. Spencer; J. M. Guerrero, " Small-Signal Modeling of Digitally Controlled Grid-Connected Inverters With LCL Filters," IEEE Transactions on Industrial Electronics, vol. 60, pp. 3752-3765, 2013.
    [32] “IEEE recommended practices and requirements for harmonic control in electrical power systems,” IEEE std. 519-2014, 2014.
    [33] 蘇靖棠,“具能源回收應用之市電併網三相換流器設計”,國立台灣科技大學電機工程所碩士論文,2017。
    [34] Texas Instruments, “TMS320x2806x Piccolo Technical Reference Manual (Rev. G)”, 2017
    [35] Broadcom/Avago, “AV02-1289EN-DS-HCPL-7840-09Jul20121”, 2012.
    [36] Analog Device, “AD8671/AD8672/AD8674 (Rev. F)”, 2009.
    [37] LEM, “lah_25-np”, 2017.
    [38] Analog Device, “AD8221”, 2011.
    [39] Infineon Technologies “1ED020I12-F2_DS_V2.0_en”, 2011.
    [40] A. I. Pressman, K. Billings, T. Morey, Switching Power Supply Design, 3rd Ed., McGraw Hill Professional, 2007.
    [41] P. Rodríguez; R. Teodorescu; I. Candela; A. V. Timbus; M. Liserre; F. Blaabjerg, "New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions ", 2006 37th IEEE Power Electronics Specialists Conference , pp. 1-7, 2006.
    [42] P. Rodriguez; A. Luna; M. Ciobotaru; R. Teodorescu; F. Blaabjerg, " Advanced Grid Synchronization System for Power Converters under Unbalanced and Distorted Operating Conditions ", IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics , pp. 5173-5178,2006.
    [43] T. Tran, T.W. Chun, H.H. Lee et al., "PLL-based Seamless Transfer Control between Grid-connected and Islanding Modes in Grid-connected Inverters", IEEE Transactions. Power Electronics, vol. 29, no. 10, pp. 5218-5228, 2014.

    無法下載圖示 全文公開日期 2023/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE