簡易檢索 / 詳目顯示

研究生: 林琮峻
Chung-Chun Lin
論文名稱: 硫屬銅化合物結合石墨氮化碳複合材料之開發與量子點敏化太陽能電池背電極之探討
Fabrication of efficient and stable quantum dot-sensitized solar cells through copper chalcogenide encapsulated graphitic carbon nitride electrocatalysts
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江佳穎
Chia-Ying Chiang
葉旻鑫
Min-Hsin Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 量子點敏化太陽能電池背電極石墨氮化碳硫化銅硒化銅陰離子置換法
外文關鍵詞: Graphic Carbon Nitride, Copper Chalcogenide, Anion Exchange
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功研發出 CuS@g-C3N4 與 CuxSe@g-C3N4 複合材料並作為背電極應 用於量子點敏化太陽能電池(Quantum Dot Sensitized Solar Cells, QDSSCs),其中 作為背電極材料的 CuS@g-C3N4 與 CuxSe@g-C3N4 具有出色的導電性、電催化活 性以及比表面積,使 QDSSCs 有著傑出的效能。在實驗中選用具良好導電性與高 化學穩定性的氧化銅(Copper oxide, CuO)作為背電極材料,接著加入石墨氮化碳 材料(Graphic Carbon Nitride, g-C3N4)提升比表面積與增加更多的電子傳輸通道, 最後以陰離子置換法將硫(Sulfur)與硒(Selenium)元素添加至背電極中,賦予其優 異電催化的效果,製備出 CuS@g-C3N4 與 CuxSe@g-C3N4 複合材料背電極,其光 電轉換效率值(Power Conversion Efficiency, PCE)由原條件之 CuO 背電極的 7.94% 分別提升至 9.71%與 9.41%。
    本篇研究中也會進行背電極材料的組成與整體形貌之鑑定。起初先以 XPS 與 FTIR 證明 g-C3N4 與三-三嗪基(Tris-triazine-based)的組成結構有相符之鍵結; 接著利用 XRD、SEM、HR-TEM 與 Mapping,來佐證添加 g-C3N4 與陰離子交換 反應而產生之形貌與元素組成的改變。此外研究中也針對不同背電極材料進行電 化學的檢測,包含 EIS、Tafel 和 CV,其中 CuS@g-C3N4 與 CuxSe@g-C3N4 都有 優異的電催化表現,表示添加 g-C3N4 與陰離子交換反應能有利於電子的傳遞與 背電極的催化,以此提升 QDSSCs 的整體效能;最後實驗也進行了 QDSSCs 的 穩定性測試,CuxSe@g-C3N4 表現了最良好的穩定性,QDSSCs 製備後存放 300 小時仍有原始效率的 60%。


    In the present study, a morphology-controlled CuS@g-C3N4 and CuxSe@g-C3N4 composites were successfully developed using a facile nanocomposite engineering approach and subsequently used as electrocatalysts for quantum dot-sensitized solar cells (QDSSCs). First, hierarchically assembled copper oxide (CuO) nanostructures are synthesized using microwave-assisted synthesis. These CuO are then embedded within graphitic carbon nitride material (CuO@g-C3N4) to improve the specific surface area and increase electron transport channels. Subsequently, sulfur and selenium have been incorporated into the counter electrode via an anion exchange strategy, making composite electrocatalysts (CuS@g-C3N4 and CuxSe@g-C3N4) with enhanced electrocatalytic activity. When employed as a counter electrode (CE) in QDSSCs, both the CuS@g-C3N4 (9.41%) and CuxSe@g-C3N4 (9.71%) composites outperform the CuO (7.94%), in terms of power conversion efficiencies (PCE). Notably, both the CuS@g-C3N4 and CuxSe@g-C3N4 have shown remarkable electrochemical and device stability in polysulfide redox couple electrolytes.
    In conclusion, we have used a two-stage method to develop efficient and stable CuS@g-C3N4 and CuxSe@g-C3N4 electrocatalysts. The 3D carbon network in these catalysts is porous and has improved surface properties, making it electrically conductive and useful. These electrocatalysts have demonstrated that these CEs photovoltaic performance and surface morphologies are composition-dependent. At first, XPS and FTIR were used to prove that g-C3N4 and tris-triazine-based had the same bonding structure; then XRD, SEM, HR-TEM, and Mapping were used to prove the addition of g-C3N4 changes in morphology and elemental composition resulting from anion exchange reactions. In addition, the electrochemical detection of various counter electrode materials was carried out using EIS, Tafel, and CV analysis. Accordingly, CuS@g-C3N4 and CuxSe@g-C3N4 exhibited excellent electrocatalytic performance, indicating that the addition of g-C3N4 and anion exchange reaction energy is beneficial to the transfer of electrons and the catalysis of the counter electrode, thereby improving the overall performance of QDSSCs. In terms of stability, CuxSe@g- C3N4 was found to be the most stable electrocatalyst retaining its 60% of original efficiency after 300 hours of storage.

    摘要 I Abstract II 致謝 III 總目錄 IV 圖目錄 VIII 表目錄 XII 第一章 序論 1 1.1 前言 1 1.2 太陽能電池的發展現況 1 1.2.1鈣鈦礦太陽能電池(Perovskite Solar Cells, PSCs) 2 1.2.2染料敏化太陽能電池(Dye Sensitized Solar Cells, DSSCs) 2 1.2.3量子點敏化太陽能電池(Quantum Dot Sensitized Solar Cells, QDSSCs) 4 1.3研究動機 5 第二章 文獻回顧 6 2.1 量子點性質 6 2.1.1量子侷限效應(Quantum Confinement Effect) 6 2.1.2多重激子效應(Multiple Exciton Generation, MEG) 8 2.2 量子點敏化太陽能電池(QDSSCs) 9 2.2.1基本工作原理 9 2.2.2元件構造介紹 11 2.2.2-1透明導電層(Transparent conductive oxide, TCO) 11 2.2.2-2氧化物半導體(Oxide semiconductor) 12 2.2.2-3敏化劑 14 2.2.2-4鈍化層(Passivation Layer) 18 2.2.2-5電解液(Electrolyte) 19 2.2.2-6背電極(Counter Electrode) 20 2.2.3背電極材料 21 2.2.3-1貴金屬背電極 21 2.2.3-2碳材背電極 21 2.2.3-3金屬硫化物、金屬硒化物、金屬氧化物背電極 24 2.2.3-4複合材料背電極 26 2.3 石墨氮化碳(Graphic Carbon Nitride, g-C3N4) 28 2.3.1石墨碳化氮材料之性質 29 2.3.2石墨碳化氮材料之應用於太陽能電池 31 2.4 離子置換機制 32 2.4.1 柯肯德爾效應(Kirkendall Effect) 33 2.4.3電偶交換法(Galvanic Exchange) 34 2.4.3陰離子交換法(Anion Exchange) 35 第三章 實驗藥品與步驟 38 3.1 實驗藥品 38 3.2 實驗器材 40 3.3 實驗步驟 41 3.3.1清洗導電玻璃 41 3.3.2光電極製備-二氧化鈦薄膜 42 3.3.3光電極製備-量子點製備與光電極敏化 43 3.3.4光電極製備-CdZnS鈍化層(SILAR法) 44 3.3.5多硫化物電解液製備 44 3.3.6背電極製備-材料合成 45 3.3.7背電極製備-配製漿料、網印與高溫燒結 45 3.3.8背電極製備-背電極硫化 46 3.3.9背電極製備-背電極硒化 46 第四章 結果與討論 47 4.1背電極材料分析與鑑定 47 4.1.1 g-C3N4材料鑑定 48 4.1.2 比表面積分析(BET Surface Area Analysis) 51 4.1.3 XRD分析 52 4.1.4 SEM分析 53 4.1.5 HRTEM分析 56 4.2 第一部分:金屬氧化物應用於QDSSCs背電極 59 4.2.1光電轉換效率(Power Conversion Efficiency, PCE)之分析 59 4.3 第二部分:使用石墨碳化氮材料與金屬氧化物結合製備成複合材料背電極 62 4.3.1光電轉換效率(Power Conversion Efficiency, PCE)之分析 62 4.4 第三部分(一):以陰離子置換法製備金屬硫化物複合材料背電極 64 4.4.1光電轉換效率(Power Conversion Efficiency, PCE)之分析 64 4.5 第三部分(二):以陰離子置換法製備金屬硒化物複合材料背電極 67 4.5.1光電轉換效率(Power Conversion Efficiency, PCE)之分析 68 4.6 背電極之效能分析 72 4.6.1 半電池電化學阻抗(Electrochemical Impedance Spectroscopy, EIS)之分析 73 4.6.2 Tafel之分析 76 4.6.3 循環伏安法(Cyclic voltammetry, CV)之分析 78 4.6.4 單一入射光子-光電轉換效率(Monochromatic Incident Photon-to-current Conversion Efficiency, IPCE)之分析 81 4.6.5 開路電壓衰退分析(Open Circuit Voltage Decay, OCVD) 82 4.6.6 QDSSCs穩定性之檢測 83 第五章 結論與未來展望 85 參考文獻 86

    [1] Ahmed, U.; Alizadeh, M.; Rahim, N. A.; Shahabuddin, S.; Ahmed, M. S.; Pandey, A. K., A comprehensive review on counter electrodes for dye sensitized solar cells: A special focus on Pt-TCO free counter electrodes. Solar Energy 2018, 174, 1097-1125.
    [2] Liao, W.; Gao, Y.; Wang, W.; Zuo, X.; Yang, Q.; Lin, Y.; Tang, H.; Jin, S.; Li, G., Boosted Reactivity of Low-Cost Solar Cells over a CuO/Co3O4 Interfacial Structure Integrated with Graphene Oxide. ACS Sustainable Chemistry & Engineering 2020, 8 (19), 7308-7315.
    [3] Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567 (7749), 511-515.
    [4] Song, H.; Lin, Y.; Zhang, Z.; Rao, H.; Wang, W.; Fang, Y.; Pan, Z.; Zhong, X., Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition. J Am Chem Soc 2021, 143 (12), 4790-4800.
    [5] Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G., High-Efficiency Perovskite Solar Cells. Chem Rev 2020, 120 (15), 7867-7918.
    [6] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society 2009, 131 (17), 6050-6051.
    [7] Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G., High‐efficiency perovskite solar cells based on the black polymorph of HC (NH2) 2PbI3. Advanced Materials 2014, 26 (29), 4991-4998.
    [8] Kokkonen, M.; Talebi, P.; Zhou, J.; Asgari, S.; Soomro, S. A.; Elsehrawy, F.; Halme, J.; Ahmad, S.; Hagfeldt, A.; Hashmi, S. G., Advanced research trends in dye-sensitized solar cells. J Mater Chem A Mater 2021, 9 (17), 10527-10545.
    [9] O'regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature 1991, 353 (6346), 737-740.
    [10] Lee, H. J.; Yum, J.-H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S. A.; Chen, P.; Seok, S. I.; Grätzel, M.; Nazeeruddin, M. K., CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. The Journal of Physical Chemistry C 2008, 112 (30), 11600-11608.
    [11] Pan, Z.; Rao, H.; Mora-Sero, I.; Bisquert, J.; Zhong, X., Quantum dot-sensitized solar cells. Chem Soc Rev 2018, 47 (20), 7659-7702.
    [12] Lee, Y.-L.; Lo, Y.-S., Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Advanced Functional Materials 2009, 19 (4), 604-609.
    [13] Kim, J.-Y.; Yang, J.; Yu, J. H.; Baek, W.; Lee, C.-H.; Son, H. J.; Hyeon, T.; Ko, M. J., Highly efficient copper–indium–selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers. ACS nano 2015, 9 (11), 11286-11295.
    [14] Wang, G.; Wei, H.; Shi, J.; Xu, Y.; Wu, H.; Luo, Y.; Li, D.; Meng, Q., Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy 2017, 35, 17-25.
    [15] Jin, B. B.; Huang, H. S.; Kong, S. Y.; Zhang, G. Q.; Yang, B.; Jiang, C. X.; Zhou, Y.; Wang, D. J.; Zeng, J. H., Antimony tin oxide/lead selenide composite as efficient counter electrode material for quantum dot-sensitized solar cells. J Colloid Interface Sci 2021, 598, 492-499.
    [16] Katan, C.; Mercier, N.; Even, J., Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chemical reviews 2019, 119 (5), 3140-3192.
    [17] Guyot-Sionnest, P.; Shim, M.; Matranga, C.; Hines, M., Intraband relaxation in CdSe quantum dots. Physical Review B 1999, 60 (4), R2181.
    [18] Afre, R. A.; Sharma, N.; Sharon, M.; Sharon, M., Transparent conducting oxide films for various applications: A review. Reviews on advanced materials science 2018, 53 (1), 79-89.
    [19] Sima, C.; Grigoriu, C.; Antohe, S., Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films 2010, 519 (2), 595-597.
    [20] Wang, W.; Feng, W.; Du, J.; Xue, W.; Zhang, L.; Zhao, L.; Li, Y.; Zhong, X., Cosensitized quantum dot solar cells with conversion efficiency over 12%. Advanced Materials 2018, 30 (11), 1705746.
    [21] Xu, Y.-F.; Wu, W.-Q.; Rao, H.-S.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., CdS/CdSe co-sensitized TiO2 nanowire-coated hollow Spheres exceeding 6% photovoltaic performance. Nano Energy 2015, 11, 621-630.
    [22] Li, C.; Yang, L.; Xiao, J.; Wu, Y.-C.; Søndergaard, M.; Luo, Y.; Li, D.; Meng, Q.; Iversen, B. B., ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (22), 8710-8715.
    [23] Yan, K.; Zhang, L.; Qiu, J.; Qiu, Y.; Zhu, Z.; Wang, J.; Yang, S., A quasi-quantum well sensitized solar cell with accelerated charge separation and collection. Journal of the American Chemical Society 2013, 135 (25), 9531-9539.
    [24] Xiao, J.; Huang, Q.; Xu, J.; Li, C.; Chen, G.; Luo, Y.; Li, D.; Meng, Q., CdS/CdSe co-sensitized solar cells based on a new SnO2 photoanode with a three-dimensionally interconnected ordered porous structure. The Journal of Physical Chemistry C 2014, 118 (8), 4007-4015.
    [25] Raissi, M.; Pellegrin, Y.; Jobic, S.; Boujtita, M.; Odobel, F., Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot. Scientific reports 2016, 6 (1), 1-7.
    [26] Huang, S.; Zhang, Q.; Huang, X.; Guo, X.; Deng, M.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q., Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays. Nanotechnology 2010, 21 (37), 375201.
    [27] Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V., Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe− TiO2 architecture. Journal of the American Chemical Society 2008, 130 (12), 4007-4015.
    [28] Zhang, Z.; Shi, C.; Chen, J.; Xiao, G.; Li, L., Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells. Applied Surface Science 2017, 410, 8-13.
    [29] Rao, H.-S.; Wu, W.-Q.; Liu, Y.; Xu, Y.-F.; Chen, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano Energy 2014, 8, 1-8.
    [30] Li, W.; Zhong, X., Capping ligand-induced self-assembly for quantum dot sensitized solar cells. The Journal of Physical Chemistry Letters 2015, 6 (5), 796-806.
    [31] Zaban, A.; Mićić, O.; Gregg, B.; Nozik, A., Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 1998, 14 (12), 3153-3156.
    [32] Chang, C.-H.; Lee, Y.-L., Chemical bath deposition of CdS quantum dots onto mesoscopic Ti O 2 films for application in quantum-dot-sensitized solar cells. Applied Physics Letters 2007, 91 (5), 053503.
    [33] Baker, D. R.; Kamat, P. V., Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Advanced Functional Materials 2009, 19 (5), 805-811.
    [34] Becker, M. A.; Radich, E. J.; Bunker, B. A.; Kamat, P. V., How does a SILAR CdSe film grow? Tuning the deposition steps to suppress interfacial charge recombination in solar cells. The Journal of Physical Chemistry Letters 2014, 5 (9), 1575-1582.
    [35] Lee, Y.-L.; Huang, B.-M.; Chien, H.-T., Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chemistry of Materials 2008, 20 (22), 6903-6905.
    [36] Tao, L.; Xiong, Y.; Liu, H.; Shen, W., High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO 2 nanotube arrays. Nanoscale 2014, 6 (2), 931-938.
    [37] Lee, J.-W.; Son, D.-Y.; Ahn, T. K.; Shin, H.-W.; Kim, I. Y.; Hwang, S.-J.; Ko, M. J.; Sul, S.; Han, H.; Park, N.-G., Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Scientific reports 2013, 3 (1), 1-8.
    [38] Regulacio, M. D.; Han, M.-Y., Composition-tunable alloyed semiconductor nanocrystals. Accounts of chemical research 2010, 43 (5), 621-630.
    [39] Kuo, K.-T.; Liu, D.-M.; Chen, S.-Y.; Lin, C.-C., Core-shell CuInS 2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency. Journal of Materials Chemistry 2009, 19 (37), 6780-6788.
    [40] Yue, L.; Rao, H.; Du, J.; Pan, Z.; Yu, J.; Zhong, X., Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC advances 2018, 8 (7), 3637-3645.
    [41] Santra, P. K.; Kamat, P. V., Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. Journal of the American Chemical Society 2012, 134 (5), 2508-2511.
    [42] Luo, J.; Wei, H.; Huang, Q.; Hu, X.; Zhao, H.; Yu, R.; Li, D.; Luo, Y.; Meng, Q., Highly efficient core–shell CuInS 2–Mn doped CdS quantum dot sensitized solar cells. Chemical Communications 2013, 49 (37), 3881-3883.
    [43] Wang, J.; Li, Y.; Shen, Q.; Izuishi, T.; Pan, Z.; Zhao, K.; Zhong, X., Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. Journal of Materials Chemistry A 2016, 4 (3), 877-886.
    [44] Firoozi, N.; Dehghani, H.; Afrooz, M., Cobalt-doped cadmium sulfide nanoparticles as efficient strategy to enhance performance of quantum dot sensitized solar cells. Journal of Power Sources 2015, 278, 98-103.
    [45] Li, Z.; Yu, L.; Wang, H.; Yang, H.; Ma, H., TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection. Nanomaterials 2020, 10 (4), 631.
    [46] Alavi, M.; Rahimi, R.; Maleki, Z.; Hosseini-Kharat, M., Improvement of Power Conversion Efficiency of Quantum Dot-Sensitized Solar Cells by Doping of Manganese into a ZnS Passivation Layer and Cosensitization of Zinc-Porphyrin on a Modified Graphene Oxide/Nitrogen-Doped TiO2 Photoanode. ACS omega 2020, 5 (19), 11024-11034.
    [47] Archana, T.; Sreelekshmi, S.; Subashini, G.; Grace, A. N.; Arivanandhan, M.; Jayavel, R., The effect of graphene quantum dots/ZnS co‐passivation on enhancing the photovoltaic performance of CdS quantum dot sensitized solar cells. International Journal of Energy Research 2021, 45 (11), 15879-15891.
    [48] Gopi, C. V.; Venkata-Haritha, M.; Kim, S.-K.; Kim, H.-J., Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale 2015, 7 (29), 12552-12563.
    [49] Fard, Z. A.; Dehghani, H., Investigation of the effect of Sr-doped in ZnSe layers to improve photovoltaic characteristics of ZnSe/CdS/CdSe/ZnSe quantum dot sensitized solar cells. Solar Energy 2019, 184, 378-390.
    [50] Abate, M. A.; Chang, J.-Y., Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Materials and Solar Cells 2018, 182, 37-44.
    [51] Rasal, A.; Chen, Y.-H.; Dehvari, K.; Getachew, G.; Tseng, P.-J.; Waki, K.; Bela, S.; Chang, J.-Y., Efficient quantum-dot-sensitized solar cells with improved stability using thixotropic polymer/nanoparticles-based gel electrolyte. Materials Today Energy 2021, 19, 100615.
    [52] Wang, X.; Feng, W.; Wang, W.; Wang, W.; Zhao, L.; Li, Y., Sodium carboxymethyl starch-based highly conductive gel electrolyte for quasi-solid-state quantum dot-sensitized solar cells. Research on Chemical Intermediates 2018, 44 (2), 1161-1172.
    [53] Zhu, G.; Pan, L.; Xu, T.; Sun, Z., CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. ACS applied materials & interfaces 2011, 3 (8), 3146-3151.
    [54] Yu, X.-Y.; Lei, B.-X.; Kuang, D.-B.; Su, C.-Y., Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chemical Science 2011, 2 (7), 1396-1400.
    [55] Gopi, C. V.; Venkata-Haritha, M.; Kim, S.-K.; Kim, H.-J., Facile fabrication of highly efficient carbon nanotube thin film replacing CuS counter electrode with enhanced photovoltaic performance in quantum dot-sensitized solar cells. Journal of Power Sources 2016, 311, 111-120.
    [56] Li, W.; Long, G.; Chen, Q.; Zhong, Q., High-efficiency layered sulfur-doped reduced graphene oxide and carbon nanotube composite counter electrode for quantum dot sensitized solar cells. Journal of Power Sources 2019, 430, 95-103.
    [57] Du, Z.; Pan, Z.; Fabregat-Santiago, F.; Zhao, K.; Long, D.; Zhang, H.; Zhao, Y.; Zhong, X.; Yu, J.-S.; Bisquert, J., Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%. The journal of physical chemistry letters 2016, 7 (16), 3103-3111.
    [58] Giménez, S.; Mora-Seró, I.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; Gómez, R.; Diguna, L. J.; Shen, Q.; Toyoda, T.; Bisquert, J., Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 2009, 20 (29), 295204.
    [59] Zhang, H.; Bao, H.; Zhong, X., Highly efficient, stable and reproducible CdSe-sensitized solar cells using copper sulfide as counter electrodes. Journal of Materials Chemistry A 2015, 3 (12), 6557-6564.
    [60] Zhang, H.; Wang, C.; Peng, W.; Yang, C.; Zhong, X., Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode. Nano Energy 2016, 23, 60-69.
    [61] Yin, J.; Jin, J.; Liu, H.; Huang, B.; Lu, M.; Li, J.; Liu, H.; Zhang, H.; Peng, Y.; Xi, P.; Yan, C. H., NiCo2 O4 -Based Nanosheets with Uniform 4 nm Mesopores for Excellent Zn-Air Battery Performance. Adv Mater 2020, 32 (39), e2001651.
    [62] Zhang, Q.; Jin, Z.; Li, F.; Xia, Z.; Yang, Y.; Xu, L., First application of CoO nanorods as efficient counter electrode for quantum dots-sensitized solar cells. Solar Energy Materials and Solar Cells 2020, 206.
    [63] Zhang, Q.; Jin, L.; Zhang, Y.; Zhang, T.; Li, F.; Xu, L., In situ sulfidation of porous sponge-like CuO/SiW11Co into Cu2S/SiW11Co as stabilized and efficient counter electrode for quantum dot-sensitized solar cells. Dalton Trans 2021, 50 (13), 4519-4526.
    [64] Xie, Y.; Xue, W.; Wang, Y.; Zhu, W.; Wang, W.; Li, Y., One-step synthesis of MOF-derived Cu@N-doped carbon composites as counter electrode catalysts for quantum dot-sensitized solar cells. Electrochimica Acta 2021, 380.
    [65] Zheng, W.; Zhang, S., Three-dimensional graphitic C3N4/CuS composite as the low-cost and high performance counter electrodes in QDSCs. Journal of Alloys and Compounds 2021, 862.
    [66] Mahmoud, S. A.; Mohamed, F. E.; El-Sadek, B. M.; Elsawy, M. M.; Bendary, S. H., Specific capacitance of CoS encapsulated g-C3N4 core shell nanocomposite as extremely efficient counter electrode in quantum dots solar cells. Journal of Solid State Electrochemistry 2021, 25 (8-9), 2345-2360.
    [67] Mortazavi, B.; Shojaei, F.; Shahrokhi, M.; Azizi, M.; Rabczuk, T.; Shapeev, A. V.; Zhuang, X., Nanoporous C3N4, C3N5 and C3N6 nanosheets; novel strong semiconductors with low thermal conductivities and appealing optical/electronic properties. Carbon 2020, 167, 40-50.
    [68] Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S. A., Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interfaces 2014, 6 (19), 16449-65.
    [69] Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J. M., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry 2008, 18 (41).
    [70] Cao, S.; Low, J.; Yu, J.; Jaroniec, M., Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 2015, 27 (13), 2150-76.
    [71] Ansari, M. S.; Banik, A.; Qureshi, M., Morphological tuning of photo-booster g-C3N4 with higher surface area and better charge transfers for enhanced power conversion efficiency of quantum dot sensitized solar cells. Carbon 2017, 121, 90-105.
    [72] Rasal, A. S.; Dehvari, K.; Getachew, G.; Korupalli, C.; Ghule, A. V.; Chang, J. Y., Efficient quantum dot-sensitized solar cells through sulfur-rich carbon nitride modified electrolytes. Nanoscale 2021, 13 (11), 5730-5743.
    [73] He, Q.; Li, S.; Huang, S.; Xiao, L.; Hou, L., Construction of uniform Co-Sn-X (X = S, Se, Te) nanocages with enhanced photovoltaic and oxygen evolution properties via anion exchange reaction. Nanoscale 2018, 10 (46), 22012-22024.
    [74] Ji, D.; Fan, L.; Tao, L.; Sun, Y.; Li, M.; Yang, G.; Tran, T. Q.; Ramakrishna, S.; Guo, S., The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high‐performance portable zinc–air batteries. Angewandte Chemie 2019, 131 (39), 13978-13982.
    [75] Wang, Z.; Peng, F.; Wu, Y.; Yang, L.; Zhang, F.; Huang, J., Template synthesis of Cu 2− x Se nanoboxes and their gas sensing properties. CrystEngComm 2012, 14 (10), 3528-3533.
    [76] Wang, X.; Zhong, X.; Lei, H.; Geng, Y.; Zhao, Q.; Gong, F.; Yang, Z.; Dong, Z.; Liu, Z.; Cheng, L., Hollow Cu2Se Nanozymes for Tumor Photothermal-Catalytic Therapy. Chemistry of Materials 2019, 31 (16), 6174-6186.
    [77] Pei, L.; Ye, Z.; Yuan, X.; Peng, X.; Li, D.; Zheng, Z., Three-dimensional CoMoMg nanomesh based on the nanoscale Kirkendall effect for the efficient hydrogen evolution reaction. Journal of Alloys and Compounds 2021, 857, 158086.
    [78] Wang, W.; Dahl, M.; Yin, Y., Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Chemistry of Materials 2012, 25 (8), 1179-1189.
    [79] Wang, Z.; Yu, N.; Li, X.; Yu, W.; Han, S.; Ren, X.; Yin, S.; Li, M.; Chen, Z., Galvanic exchange-induced growth of Au nanocrystals on CuS nanoplates for imaging guided photothermal ablation of tumors. Chemical Engineering Journal 2020, 381, 122613.
    [80] Wang, X.; Yu, L.; Guan, B. Y.; Song, S.; Lou, X. W., Metal–Organic Framework Hybrid‐Assisted Formation of Co3O4/Co‐Fe Oxide Double‐Shelled Nanoboxes for Enhanced Oxygen Evolution. Advanced Materials 2018, 30 (29), 1801211.
    [81] Zhao, W.; Zhang, C.; Geng, F.; Zhuo, S.; Zhang, B., Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS nano 2014, 8 (10), 10909-10919.
    [82] Yu, J.; Zhang, J.; Liu, S., Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres. The Journal of Physical Chemistry C 2010, 114 (32), 13642-13649.
    [83] Hwang, I.; Yong, K., Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ChemElectroChem 2015, 2 (5), 634-653.
    [84] Li, W.; Chen, Q.; Zhong, Q., One-pot fabrication of mesoporous g-C3N4/NiS co-catalyst counter electrodes for quantum-dot-sensitized solar cells. Journal of Materials Science 2020, 55 (24), 10712-10724.

    無法下載圖示 全文公開日期 2025/08/23 (校內網路)
    全文公開日期 2025/08/23 (校外網路)
    全文公開日期 2025/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE