簡易檢索 / 詳目顯示

研究生: 許仁賓
Jen-pin Hsu
論文名稱: 銅-鋅-錫和銅-硫化鋅-錫靶材濺鍍製備硒化銅錫鋅和硒硫化銅錫鋅薄膜太陽能電池及其分析
Preparation, property, and device performace of Cu2ZnSnSe4 and Cu2ZnSn(S,Se)4 thin films deposited with Cu-Zn-Sn and Cu-ZnS-Sn targets and subsequent selenization
指導教授: 郭東昊
Dong-hau Kuo
口試委員: 何清華
Ching-hwa Ho
郭永綱
Yung-kang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 153
中文關鍵詞: 硒化銅錫鋅硒硫化銅錫鋅濺鍍太陽能電池
外文關鍵詞: CZTSe, CZTSSe, sputter, solar cell
相關次數: 點閱:374下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    因能源危機使大家投入太陽能電池的研究與發展,目前化合物薄膜太陽能電池以銅銦鎵硒為主,由於成本高昂,因而發展出硒化銅錫鋅與硫化銅錫鋅兩種化合物太陽能電池,除了成本考量,也因錫、鋅含量豐富且能隙值分別為0.9 eV及1.5 eV,適合拿來作替換的材料。
    本次實驗利用自製的金屬靶濺鍍製備Cu-Zn-Sn (CZT)薄膜及以 (Cu-ZnS-Sn) 陶金靶濺鍍製備Cu-ZnS-Sn陶金薄膜,進行硒化和硒硫化反應,製備硒化銅錫鋅與硒硫化銅錫鋅太陽能電池 ,並探討不同的硒碇及硒硫碇在不同的硒化與硒硫化反應溫度對薄膜特性之影響,並且透過FE-SEM、XRD、EDS與霍爾電特性量測來分析薄膜物理性質。將實驗結果較佳參數所得的吸收層製備成薄膜太陽能電池元件,其構造為Ag/ITO(RF)/i-ZnO(RF)/CdS(CBD)/Cu2ZnSnSe4或Cu2ZnSn(S,Se)4薄膜/Mo(DC)/Al2O3,再利用擬太陽能光測試儀器測試其電池之轉換效率。
    經過實驗結果顯示,使用【雙碇】進行兩階段硒化和硒硫化反應的方式(第一階段300 ℃,第二階段600 ℃)所製備之薄膜性質其晶粒最佳其尺寸約為2 μm~5 μm,而由XRD及EDS都可以證明此薄膜為黃錫礦結構並有Cu0.8Zn0.5Sn0.5Se2、Cu0.8Zn0.5Sn0.5(S,Se)2組成比例。將此參數製備元件,分別量測出0.58%及0.45%的光電轉換效率。


    Abstract
    Due to energy crisis, the research of solar cells is much more attractive. One of the main compound solar cells is the Cu(In,Ga)Se2 system but its higher cost has made Cu2ZnSnSe4 (CZTSe) and Cu2ZnSnS4(CZTS) with energy band gaps of 0.9 eV and 1.5 eV, respectively, attractive for thin-film solar cells.
    In this study, CZTSe and CZTSSe thin film solar cells were prepared on the molybdenum-coated soda lime glass (SLG) substrates. The effects of selenization conditions using Se- and (Se+S)-containing discs and reaction temperature on the performance of sputtered CZT and Cu-ZnS-Sn thin film were evaluated. The CZTSe and CZTSSe solar cell was constituted with the stacking sequence of Ag/ITO/ZnO/CdS/ CZTSe or CZTSSe/Mo/SLG. The quality of the absorption layer was analyzed by X-ray diffractometer and field-emission scanning electron microscope equipped with energy dispersive X-ray spectrometer. The performance of the solar cells was evaluated under the standard AM1.5 illumination.
    The experimental results showed that the best condition for the CZTSe and CZTSSe thin film was obtained by selenization at 600 oC with a two-step process and with double discs. The CZTSe and CZTSSe films were dense and had the desired composition, good crystallinity, and the grain size of 3-5 μm. The stacked solar cells displayed the power conversion efficiencies of 0.58% and 0.45% for the cells with the CZTSe and CZTSSe absorption layers, respectively.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池基本構造定義 2 1-3 太陽能電池發展 3 1-4 薄膜太陽能電池的種類 4 1-4-1 矽薄膜太陽能電池(Thin film silicon solar cells) 4 1-4-2 非晶系矽太陽能電池 (Amorphous silicon solar cell) 4 1-4-3 碲化鎘薄膜太陽能電池 (Cadmium Telluride Thin Film Photovoltaics,CdTe) 5 1-4-4 硒化銅銦鎵太陽能電池 (Copper Indium Gallium Diselenide solar cells, CIGSe) 6 1-5 研究動機與目的 6 第二章 基礎理論與文獻回顧 9 2-1 理論基礎 9 2-1-1太陽能電池工作原理 9 2-1-2薄膜沉積理論基礎 13 2-2 化合物太陽能電池各層之介紹與功能 13 2-2-1 鈉玻璃基板 (Soda-lime glass) 14 2-2-2 鉬金屬背部電極 (Mo back contact) 15 2-2-3主吸收層 (Absorber layer) 15 2-2-4 緩衝層(Buffer layer) 44 2-2-5 窗口層(Window layer) 45 2-2-6 透明導電層 ( Transparent conducting oxide,TCO ) 45 2-2-7 上電極 45 第三章 實驗步驟 46 3-1 實驗設備說明 46 3-1-1 D.C.直流濺鍍系統 46 3-1-2 RF射頻濺鍍系統 47 3-1-3 高溫管型爐 48 3-1-4 化學浴相關儀器設備 48 3-2 實驗藥品與氣體選擇 52 3-2-1 藥品 52 3-2-2 氣體 53 3-3 實驗流程 54 3-3-1 基板清洗 54 3-3-2 吸收層靶材粉末製備 54 3-3-3 吸收層靶材製備 55 3-3-4 薄膜濺鍍 56 3-3-5 退火熱處理 56 3-3-6 緩衝層 56 3-3-7 本質層 57 3-3-8 透明導電層 57 3-3-9 上電極 57 3-4 實驗參數 58 3-5 分析儀器 62 3-5-1 X光繞射分析儀 (X-ray Diffractometer,XRD) 62 3-5-2場發射掃描式電子顯微鏡 (Field Emission-Scanning Electron Microscope,FE-SEM) 62 3-5-3 霍爾量測 (Hall Effect Measurement System) 63 3-5-4 擬太陽能光測試儀 (Standard AM1.5 illumination meter) 63 第四章 結果與討論 70 4-1 金屬靶製備之Cu2ZnSnSe4 薄膜其之FE-SEM 表面形貌觀察 70 4-1-1 金屬靶製備Cu2ZnSnSe4 薄膜 70 4-2 金屬靶與陶金靶製備之Cu2ZnSn(S,Se)4 薄膜其之FE-SEM 表面形貌觀察 84 4-2-1金屬靶製備Cu2ZnSn(S,Se)4 薄膜 84 4-2-2陶金靶製備Cu2ZnSn(S,Se)4 薄膜之FE-SEM 表面形貌觀察 86 4-3 XRD結構性質分析 92 4-3-1金屬靶製備之Cu2ZnSnSe4 薄膜之XRD結構性質分析 92 4-3-2金屬靶與陶金靶製備Cu2ZnSn(S,Se)4 薄膜之XRD結構性質分析 101 4-4 EDS成分分析 106 4-4-1金屬靶製備之Cu2ZnSnSe4 薄膜之EDS成分分析 106 4-4-2金屬靶與陶金靶製備Cu2ZnSn(S,Se)4 薄膜之EDS成分分析 112 4-5霍爾量測 (Hall measurement) 122 4-6 電池的製備與分析 128 4-6-1 CZTSe與CZTSSe 薄膜太陽能電池之光電轉換效率 128 第五章 結論 132 參考文獻 134

    [1]《聯合國氣候變化框架公約》京都議定書

    [2] Adams, W.G. and R.E., Day. Proc. R. Soc., A25, p.113(1877).

    [3] Richard H. Bube, Photovoltaic Materials, p.8-11.

    [4] 柯志昇,綠色能源當道-全球太陽能電池市場與產業發展趨勢分析

    [5] Ingrid Repins, Miguel A. Contreras1, Brian Egaas1, Clay DeHart, John Scharfl, Craig L. Perkins,Bobby Toand Rommel Noufi. “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor” Prog. Photovolt: Res. Appl. 16, 235–239(2008).

    [6] Ingrid Repins, Carolyn Beall, Nirav Vora, Clay DeHart, Darius
    Kuciauskas, Pat Dippo,Bobby To, Jonathan Mann, Wan-Ching Hsu,
    Alan Goodrich, Rommel Noufi. “Co-evaporated Cu2ZnSnSe4 films and
    devices,”Solar Energy Materials & Solar Cells, 101,154-159 (2012).

    [7] Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay
    Chey and Supratik Guha. “Thin film solar cell with 8.4% power
    conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber.”
    Progress in Photovoltaics: Research and Applications, 2011. DOI:
    10.1002/pip.1174

    [8] U. Rau, H.W. Schock “Electronic properties of Cu(In,Ga)Se2 hetero
    junction solar cells-recent achievements, current understanding and
    future challenges” Applied Physics ,A 69, 131-147(1999).

    [9] Yan, J. H., Kim, M.S., “Fabrication of CIGS solar cells with a
    Na-doped Mo layer on a Na-free substrate,” Thin Solid Films, Vol.515,
    p. 5876-5879 (2007).

    [10] R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse,
    T.Unold, A. Eicke, R. Klenk, H.W. Schock. “ The influence of Na on
    low temperature growth of CIGS thin film solar cells on polymide
    substrate” Thin Solid Films ,Vol.517, p.2187-2190(2009).

    [11] J. Krustok, R. Josepson, T. Raadik, M. Danilson“Potential fluctuations
    in Cu2ZnSnSe4 solar cells studied by temperature dependence of
    quantum efficiency curves” Physica B,405, 3186-3189(2010).

    [12] Satoshi Nakamura, Tsuyoshi Maeda, and Takahiro Wada “Electronic structure of stannite-type Cu2ZnSnSe4 by first principles calculations” Physica Status Solidi C ,6,1261-1265(2009).

    [13] SeJin Ahn, Sunghun Jung, Jihye Gwak, Ara Cho, Keeshik Shin,
    Kyunghoon Yoon,Doyoung Park, Hyeonsik Cheong,2and Jae Ho Yun
    “Determination of band gap energy Eg… of Cu2ZnSnSe4 thin films: on the discrepancies of reported band gap values” Applied Physics Letters, 97, 021905(2010).

    [14] Alexey Shavel, Jordi Arbiol, and Andreu Cabot“Synthesis of
    quaternary chalcogenide nanocrystals: stannite Cu2ZnxSnySe1+x+2y”
    JACS ,132, 4514-4515(2010).

    [15] G. Zoppi, I. Forbes, R.W Miles, P.J. Dale, J.J. Scragg and L. M.Peter.
    “Cu¬2ZnSnSe4 thin film solar cells produced by selenisation of
    magnetron sputtered precursors”Prog.Photovolt:
    Res,17,315-319(2009).

    [16] Suresh Babu G., Kishore Kumar Y.B., Uday Bhaskar P., Sundara Raja
    Vanjari. “Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films.”Solar Energy Materials and
    Solar Cells, 94, p. 221-226(2010).

    [17] Hao Wei, Wei Guo , Yijing Sun, Zhi Yang , Yafei Zhang.
    “Hot-injection synthesis and characterization of quaternary
    Cu2ZnSnSe4 nanocrystals.” Materials Letters, 64,p. 1424-1426(2010).

    [18] Rachmat Adhi Wibowo, Woo Seok Kim, Eun Soo Lee, Badrul Munir,
    Kyoo Ho Kim.“Single step preparation of quaternary thin films by
    RF magnetron sputtering from binary chalcogenide targets.” Journal
    of Physics and Chemistry of Solids, 68, p. 1908-1913(2007).

    [19] Hironori Katagiri, Kazuo Jimbo, Win Shwe Maw, Koichiro
    Oishi,Makoto Yamazaki, Hideaki Araki, Akiko Takeuchi,
    “Development of CZTS-based thin film solar cells,” Thin Solid Films, 517 , 2455-2460(2009).
    [20] K. Ito, T. Nakazawa, Jpn. Journal of Applied Physics.,27, 2094-2097
    (1988).

    [21] Shiyou Chen, X.G. Gong, Aron Walsh, and Su-Huai Wei,“Defect
    physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4,”
    Applied Physics Letters ,96, 021902 (2010).

    [22] Fangyang Liu, Kun Zhang, Yanqing Lai, Jie Li, Zhian Zhang, and
    Yexiang Liu. “Growth and characterization of Cu2ZnSnS4 thin films
    by DC reactive magnetron sputtering for photovoltaic applications.”
    Electrochemical and Solid-State Letters,13, p. H379(2010).

    [23] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T.
    Fukano, T. Ito, T. Motohiro, “Enhanced conversion efficiencies of
    Cu2ZnSnS4 -based thin film solar cells by using preferential etching
    technique” , Applied Physics Express,1,041201-1–141201-2(2008).

    [24] Chan, C.P., H. Lam, and C. Surya, “Preparation of Cu2ZnSnS4 films
    by electrodeposition using ionic liquids.”Solar Energy Materials and
    Solar Cells,94, p. 207-211(2010).

    [25] Hideaki Araki, Yuki Kubo , Aya Mikaduki , Kazuo Jimbo , Win Shwe
    Maw , Hironori Katagiri , Makoto Yamazaki , Koichiro Oishi , Akiko
    Takeuchi. “Preparation of Cu2ZnSnS4 thin films by sulfurizing
    electroplated precursors.” Solar Energy Materials and Solar Cells,
    93, p. 996-999(2009).

    [26] Kunihiko Tanaka,Masatoshi Oonuki, Noriko Moritake, Hisao
    Uchiki.“Cu¬2ZnSnS4 thin film solar cells prepared by non-vacuum processing” Solar Energy Materials & Solar Cells,93,583-587(2009).

    [27] Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja “Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films” Solar Energy Materials & Solar Cells,93,p.1230-1237 (2009).

    [28] D. Aaron R. Barkhouse, Oki Gunawan, Tayfun Gokmen, Teodor K.
    Todorov and David B. Mitzi. “Device characteristics of a 10.1%
    hydrazine-processed Cu2ZnSn(Se,S)4 solar cell.” Progress in
    Photovoltaics: Research and Applications, 20, p. 6-11(2012).

    [29] Todorov, T.K., K.B. Reuter, and D.B. Mitzi, “High-efficiency solar
    cell with earth-abundant liquid-processed absorber.”Adv Mater,
    22, p. E156-9(2010).

    [30] Qijie Guo, H.W.H., and Rakesh Agrawal,“Synthesis of Cu2ZnSnS4
    nanocrystal ink and its use for solar cells.”JACS, 131, p. 11672-
    11673(2009).

    [31] Louis Grenet, Sergio Bernardi, David Kohen, Christophe Lepoittevin,
    Sebastien Noel, Nicolas Karst, Arnaud Brioude, Simon Perraud, Henri Mariette, “Cu2ZnSn(S1−xSex)4 based solar cell produced by
    selenization of vacuum deposited precursors.”Solar Energy Materials & Solar Cells, 101 ,p. 11-14(2012).

    [32] Zhou Limeo, Xue Yuzhi, LI Jianfeng“Study on ZnS thin films
    prepared by chemical bath deposition” Journal of Environmental
    Sciences Supplement ,p.76-79(2009).

    [33] H. Komaki, A. Yamada, K. Sakurai, S. Ishizuka, Y.Kamikawa
    Shimizu, K. Matsubara, H. Shibata, and S. Niki“CIGS solar
    cell with CdS buffer layer deposited by ammonia-free process” Phys.
    Status Solidi A ,206, No.5, p.1072-1075(2009).

    [34] Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F.R. Diaz, M.
    Morsli, K. Napo, M.A. del Valle, J.C. Bernede“ZnO thin films
    fabricated by chemical bath deposition, used as buffer layer in organic
    solar cells”Applied Surface Science, 25, p.6615-6619 (2009).

    [35] 吳先本,“濺鍍法製備硒化銅錫鋅太陽能電池及其分析”國立台灣科技大學 材料科技研究所,碩士學位論文(2009)

    [36] 張謙維,“利用油墨網印法製備硒化銅銦鎵薄膜太陽能電池及其分析”國 立台灣科技大學 材料科學與工程所,碩士學位論文(2010)

    QR CODE