簡易檢索 / 詳目顯示

研究生: 黃詩雯
Shih-Wen Huang
論文名稱: 交聯聚苯并咪唑製備與性質探討及陰離子交換 膜燃料電池之應用
Fabrication and Properties of Crosslinked Polybenzimidazoles for Anion Exchange Membrane Fuel Cell Applications
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 陳志堅
Jyh-Chien Chen
游進陽
Chin-Yang Yu
李世偉
Shih-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 132
中文關鍵詞: 聚苯并咪唑交聯陰離子交換膜疊氮-炔環加成四級銨陽離子離子通道微相分離陰離子傳導率燃料電池
外文關鍵詞: alkyne-azide cycloaddition, fuell cell
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以m-PBI 及2,2'-dimethylpoly(oxyphenylene benzimidazole) (Me-OPBI)
    為高分子主鏈,並於側鏈導入四級胺基團與末端炔官能基,以進料比、溫度與時
    間調控陰離子交換膜之離子交換容量與交聯比例,接著利用疊氮-炔環加成反應,
    將末端炔與1, 3-二疊氮丙烷進行交聯,並探討不同接枝率、交聯程度、交聯時間
    對於薄膜性質之影響,以及硫醇-烯加成反應與疊氮-炔環加成反應進行交聯後性
    質之比較。
    以m-PBI 為主鏈之聚苯并咪唑起初在接枝過程遇溶解度不佳之問題,IEC 若
    低於2.85 mmol/g 即無法溶於有機溶劑中,將乙基導入結構中可有效改善溶解度,
    且可調IEC 範圍可擴大從0.76 至2.65 mmol/g。交聯後之薄膜吸水率介於10-45%,
    溶脹率為0.3-17%,結果顯示交聯可使尺寸穩定性更佳且有效抑止吸水率,於乾
    溼膜狀態亦有良好之機械性質。導入乙基後之氫氧根離子傳導率在80°C 下可提
    升至106.7 mS/cm,並更進一步利用AFM、SAXS 分析薄膜之離子簇尺寸。高IEC
    之薄膜在60°C 1 M KOH 鹼性環境中720 小時後,80°C 之傳導率還保有大於
    80%。電池功率的部分,以操作溫度60 ℃、氫氣/氧氣量測下可得到576.9 mW
    cm-2 之單電池功率密度。將本研究與硫醇-烯加成反應進行交聯後的薄膜比較性
    質,顯示疊氮-炔環加成反應進行交聯之薄膜具有良好之熱性質與鹼性穩定性。
    本研究同時以Me-OPBI 含有醚鏈的主鏈高分子進行薄膜性質之探討,交聯
    後薄膜之長度與厚度溶脹率分別只有3.2%及5.3%,吸水率只有25%,80 °C 下
    之陰離子傳導率可達140.2 mS/cm。薄膜在60°C 1 M KOH 鹼性環境中720 小時
    後,80°C 之傳導率損失小於20%。以上結果顯示本研究所製備之陰離子交換膜
    具備足夠性質應用於燃料電池。


    In this work, we grafted the long alkyl quaternary ammonium side chain and
    terminal alkyne onto the polybenzimidazole-based backbone, m-PBI and 2,2'-
    dimethylpoly(oxyphenylene benzimidazole) (Me-OPBI). We successfully controlled
    the IECs and crosslinking degree of the anion exchange membrane(AEM) by feeding
    ratio, temperature, and time. Alkyne-azide cycloaddition was used to crosslink the
    AEMs subsequently. The different properties of membrane, such as graft ratio,
    crosslinking degree and crosslinking time were discussed. Various crosslinking
    reactions were also compared, including thiol-ene reaction and alkyne-azide
    cycloaddition.
    Due to the poor solubility of m-PBI, the polymer cannot be dissolved in organic
    solvent if the IEC is lower than 2.85 mmol/g, thus we introduce ethyl side chain onto
    the polymer backbone and effectively improve the solubility. Futhermore, the
    adjustable range of IEC value could be expanded from 0.76 to 2.65 mmol/g. The water
    uptake of crosslinked membrane ranged from 10 to 45 % and the swelling ratio between
    0.3 and 17 %. The results indicate that swelling ratio and water uptake can be inhibited by crosslinking, the crosslinked membrane showed excellent mechanical properties of dry and hydrated membranes as well. After introducing ethyl side chain onto m-PBI, hydroxide conductivity of AEMs at 80°C increased to 106.7 mS/cm which further investigate the size of ionic cluster by AFM and SAXS. Even if the membrane with high IEC value, the conductivity still retain more than 80% after immersing in 1 M KOH at 60°C for 720 h. H2/O2 single cell performance was tested at 60°C, the cell with membrane shows a peak power density of 576.9 mW/cm2. The properties of membrane
    in this work was compared to the crosslinked membrane via thiol-ene reaction from literature. The data demonstrate that the crosslinked membrane via alkyne-azide
    cycloaddition showed outstanding thermal properties and alkaline stability.
    Additionaly, the membrane properties of Me-OPBI which had ether linkage on its
    main chain was disscussed. The Me-OPBI based AEM also exhibited low swelling ratio
    of 3.2%, 5.3% in length and thick respectively and water uptake of 25%, hydroxide
    conductivity of AEMs at 80°C could achieve 140.2 mS/cm. Afterwards the membrane
    immersing in 1 M KOH at 60°C for 720h, the conductivity loss less than 20%. The
    above results suggest that the fabricated membrane in this work have enough properties for fuell cell application.

    中文摘要 I Abstract II 致謝 IV 目錄 V Figure 索引 VIII Scheme 索引 XI Table 索引 XII 第一章 緒論 1 1.1 前言 1 1.2 氫能 2 產氫方式 3 氫氣的應用-燃料電池 7 1.3 AEMEL 原理與構造 9 析氫反應(HER) 9 析氧反應(OER) 11 電解之極化曲線(I-V curve) 11 1.4 AEMFC 原理與構造 14 氫氣氧化反應(HOR) 15 氧還原反應(ORR) 16 電池之極化曲線(I-V curve) 17 第二章 文獻回顧 20 2.1 陰離子交換膜介紹 20 高分子主鏈與陽離子基團 22 傳導機構 23 鹼穩定性與降解機制 24 2.2 聚苯并咪唑之介紹 29 聚苯并咪唑之合成 29 聚苯并咪唑之改質 30 2.3 交聯 33 2.4 聚苯并咪唑在AEMFC之應用 34 2.5 陰離子傳導率-EIS 39 量測方式之選擇 42 阻抗影響因素 43 圖譜解釋 45 取數據 47 2.6 陰離子交換膜之離子通道 48 形態學表徵方式-AFM、SAXS 49 2.7 研究動機與目的 51 第三章 實驗 52 3.1 實驗儀器 52 3.2 實驗藥品 52 3.3 聚苯并咪唑之聚合 54 m-PBI 之製備 54 Me-OPBI 之製備 54 3.4 改質聚苯并咪唑之合成 55 m-1.7Q0.25Py 之合成 55 m-1.0Q0.85Et0.15Py 之合成 55 Me-1.32Q0.6Py 之合成 55 3.5 交聯聚苯并咪唑薄膜之製備方法 56 3.6 膜電極組(Membrane electrode assembly, MEA)之製備 57 第四章 結果與討論 58 4.1 聚苯并咪唑之合成與性質表徵 58 高分子分子量之影響 62 接枝乙基之目的及進藥順序之選擇 63 接枝順序之影響 64 4.2 聚苯并咪唑之交聯與製備 66 4.3 熱性質與機械性質 69 4.4 IEC、溶脹率、吸水率、Gel fraction 74 4.5 陰離子傳導率 78 4.6 表面與微結構分析 83 4.7 鹼性穩定性 91 4.8 陰離子交換膜燃料電池之測試 92 4.9 Thiol-ene 與AAC 交聯對性質比較 93 第五章 結論 98 參考文獻 99

    1. International Energy Agency net zero by 2050,a roadmap for the global energy sector. https://iea.blob.core.windows.net/assets/4719e321-6d3d-41a2-bd6b-461ad2f850a8/NetZeroby2050-ARoadmapfortheGlobalEnergySector.pdf (accessed Oct 08).
    2. Singh, R.; Singh, M.; Gautam, S., Hydrogen economy, energy, and liquid organic carriers for its mobility. Materials Today: Proceedings 2021, 46, 5420-5427.
    3. Hughes, J. P.; Clipsham, J.; Chavushoglu, H.; Rowley-Neale, S. J.; Banks, C. E., Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts. Renewable and Sustainable Energy Reviews 2021, 139, 110709.
    4. International Energy Agency Unlocking the Potential of Hydrogen Energy Storage. https://www.fchea.org/in-transition/2019/7/22/unlocking-the-potential-of-hydrogen-energy-storage (accessed Oct 05).
    5. Baykara, S. Z., Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy 2018, 43 (23), 10605-10614.
    6. Acar, C.; Dincer, I., Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy 2014, 39 (1), 1-12.
    7. Tarhan, C.; Çil, M. A., A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage 2021, 40, 102676.
    8. Nikolaidis, P.; Poullikkas, A., A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 2017, 67, 597-611.
    9. Kim, Y. S., Polymer Electrolytes with High Ionic Concentration for Fuel Cells and Electrolyzers. ACS Applied Polymer Materials 2021, 3 (3), 1250-1270.
    10. Li, D.; Motz, A. R.; Bae, C.; Fujimoto, C.; Yang, G.; Zhang, F.-Y.; Ayers, K. E.; Kim, Y. S., Durability of anion exchange membrane water electrolyzers. Energy & Environmental Science 2021, 14 (6), 3393-3419.
    11. Shiva Kumar, S.; Himabindu, V., Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies 2019, 2 (3), 442-454.
    12. Chenhuan, Z.; Wenqiang, Z.; Bo*, Y.; Jianchen, W.; Jing, C., Solid Oxide Electrolyzer Cells. Progress in Chemistry 2016, 28(8), 1265-1288.
    13. Bianchi, F. R.; Bosio, B., Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells. Sustainability 2021, 13 (9).
    14. Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T., Renewable Power-to-Gas: A technological and economic review. Renewable Energy 2016, 85, 1371-1390.
    15. Vincent, I.; Bessarabov, D., Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews 2018, 81, 1690-1704.
    16. Hren, M.; Božič, M.; Fakin, D.; Kleinschek, K. S.; Gorgieva, S., Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustainable Energy & Fuels 2021, 5 (3), 604-637.
    17. McLarty, D.; Brouwer, J.; Samuelsen, S., Hybrid Fuel Cell Gas Turbine System Design and Optimization. Journal of Fuel Cell Science and Technology 2013, 10 (4).
    18. Shaari, N.; Kamarudin, S. K., Chitosan and alginate types of bio-membrane in fuel cell application: An overview. Journal of Power Sources 2015, 289, 71-80.
    19. Kumar, A.; Singh, S.; Liu, Y., A Comprehensive Review of Fuel Cell and its Types. International Journal of Research in Mechanical Engineering and Technology, IJRMET 2013, 3.
    20. Gülzow, E.; Schulze, M., Long-term operation of AFC electrodes with CO2 containing gases. Journal of Power Sources 2004, 127 (1), 243-251.
    21. Hu, C.; Zhang, L.; Gong, J., Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy & Environmental Science 2019, 12 (9), 2620-2645.
    22. 熊昆; 高媛; 周桂林, 电解水析氢非铂催化剂的设计与发展. 中国有色金属学报 2017, 219 (6), 1289-1302.
    23. Guo, Y.; 商, 昌.; 李, 敬.; 汪, 尔., 电催化析氢、析氧及氧还原研究进展. SCIENTIA SINICA Chimica 2018, 48.
    24. Bladergroen, B.; Su, H.; Pasupathi, S.; Linkov, V., Overview of Membrane Electrode Assembly Preparation Methods for Solid Polymer Electrolyte Electrolyzer. 2012; p 45.
    25. Su, X.; Gao, L.; Hu, L.; Qaisrani, N. A.; Yan, X.; Zhang, W.; Jiang, X.; Ruan, X.; He, G., Novel piperidinium functionalized anionic membrane for alkaline polymer electrolysis with excellent electrochemical properties. Journal of Membrane Science 2019, 581, 283-292.
    26. Xu, D.; Stevens, M. B.; Cosby, M. R.; Oener, S. Z.; Smith, A. M.; Enman, L. J.; Ayers, K. E.; Capuano, C. B.; Renner, J. N.; Danilovic, N.; Li, Y.; Wang, H.; Zhang, Q.; Boettcher, S. W., Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catalysis 2019, 9 (1), 7-15.
    27. Peng, X.; Kulkarni, D.; Huang, Y.; Omasta, T. J.; Ng, B.; Zheng, Y.; Wang, L.; LaManna, J. M.; Hussey, D. S.; Varcoe, J. R.; Zenyuk, I. V.; Mustain, W. E., Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nature Communications 2020, 11 (1), 3561.
    28. Zhao, R.; Yue, X.; Li, Q.; Fu, G.; Lee, J.-M.; Huang, S., Recent Advances in Electrocatalysts for Alkaline Hydrogen Oxidation Reaction. Small 2021, n/a (n/a), 2100391.
    29. Firouzjaie, H. A.; Mustain, W. E., Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells. ACS Catalysis 2020, 10 (1), 225-234.
    30. Li, Y.; Li, Q.; Wang, H.; Zhang, L.; Wilkinson, D. P.; Zhang, J., Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochemical Energy Reviews 2019, 2 (4), 518-538.
    31. Fuel Cell Store Considerations for Fuel Cell Design. https://www.fuelcellstore.com/blog-section/considerations-for-fuel-cell-design (accessed Oct 06).
    32. Truong, V. M.; Duong, N. B.; Wang, C.-L.; Yang, H., Effects of Cell Temperature and Reactant Humidification on Anion Exchange Membrane Fuel Cells. Materials 2019, 12 (13).
    33. Shin, M.-S.; Lim, S.; Park, J.-H.; Kim, H.-J.; Chae, S.; Park, J.-S., Thermally crosslinked and quaternized polybenzimidazole ionomer binders for solid alkaline fuel cells. International Journal of Hydrogen Energy 2020, 45 (20), 11773-11783.
    34. García-Nieto, D.; Barragán, V. M., A comparative study of the electro-osmotic behavior of cation and anion exchange membranes in alcohol-water media. Electrochimica Acta 2015, 154, 166-176.
    35. Chen, N.; Lee, Y. M., Anion exchange polyelectrolytes for membranes and ionomers. Progress in Polymer Science 2021, 113, 101345.
    36. Grew, K.; Chiu, W., A Dusty Fluid Model for Predicting Hydroxyl Anion Conductivity in Alkaline Anion Exchange Membranes. Journal of The Electrochemical Society 2010, 157, B327-B337.
    37. Abdi, Z. G.; Chen, J.-C.; Chiu, T.-H.; Yang, H.; Yu, H.-H., Synthesis of ionic polybenzimidazoles with broad ion exchange capacity range for anion exchange membrane fuel cell application. Journal of Polymer Science 2021, 59 (18), 2069-2081.
    38. Chikh, L.; Delhorbe, V.; Fichet, O., (Semi-)Interpenetrating polymer networks as fuel cell membranes. Journal of Membrane Science 2011, 368 (1), 1-17.
    39. Coppola, R. E.; Herranz, D.; Escudero-Cid, R.; Ming, N.; D’Accorso, N. B.; Ocón, P.; Abuin, G. C., Polybenzimidazole-crosslinked-poly(vinyl benzyl chloride) as anion exchange membrane for alkaline electrolyzers. Renewable Energy 2020, 157, 71-82.
    40. Lin, C. X.; Zhuo, Y. Z.; Hu, E. N.; Zhang, Q. G.; Zhu, A. M.; Liu, Q. L., Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability. Journal of Membrane Science 2017, 539, 24-33.
    41. Yassin, K.; Rasin, I. G.; Brandon, S.; Dekel, D. R., Quantifying the critical effect of water diffusivity in anion exchange membranes for fuel cell applications. Journal of Membrane Science 2020, 608, 118206.
    42. Luo, X.; Wright, A.; Weissbach, T.; Holdcroft, S., Water permeation through anion exchange membranes. Journal of Power Sources 2018, 375, 442-451.
    43. Dekel, D. R.; Willdorf, S.; Ash, U.; Amar, M.; Pusara, S.; Dhara, S.; Srebnik, S.; Diesendruck, C. E., The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment. Journal of Power Sources 2018, 375, 351-360.
    44. Wierzbicki, S.; Douglin, J. C.; Kostuch, A.; Dekel, D. R.; Kruczała, K., Are Radicals Formed During Anion-Exchange Membrane Fuel Cell Operation? The Journal of Physical Chemistry Letters 2020, 11 (18), 7630-7636.
    45. Fujimoto, C.; Kim, D.-S.; Hibbs, M.; Wrobleski, D.; Kim, Y. S., Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells. Journal of Membrane Science 2012, 423-424, 438-449.
    46. Hagesteijn, K. F. L.; Jiang, S.; Ladewig, B. P., A review of the synthesis and characterization of anion exchange membranes. Journal of Materials Science 2018, 53 (16), 11131-11150.
    47. Wang, X.; Chen, W.; Li, T.; Yan, X.; Zhang, Y.; Zhang, F.; Wu, X.; Pang, B.; Li, J.; He, G., Ultra-thin quaternized polybenzimidazole anion exchange membranes with throughout OH− conducive highway networks for high-performance fuel cells. Journal of Materials Chemistry A 2021, 9 (12), 7522-7530.
    48. Wang, Y.; Qiao, X.; Liu, M.; Liu, L.; Li, N., The effect of –NH− on quaternized polybenzimidazole anion exchange membranes for alkaline fuel cells. Journal of Membrane Science 2021, 626, 119178.
    49. Wang, X.; Chen, W.; Yan, X.; Li, T.; Wu, X.; Zhang, Y.; Zhang, F.; Pang, B.; He, G., Pre-removal of polybenzimidazole anion to improve flexibility of grafted quaternized side chains for high performance anion exchange membranes. Journal of Power Sources 2020, 451, 227813.
    50. Mamlouk, M.; Scott, K., Effect of anion functional groups on the conductivity and performance of anion exchange polymer membrane fuel cells. Journal of Power Sources 2012, 211, 140-146.
    51. Couture, G.; Alaaeddine, A.; Boschet, F.; Ameduri, B., Polymeric Materials as Anion-Exchange Membranes for Alkaline Fuel Cells. Prog Polym Sci 2011, 36 (11), 1521-1557.
    52. Weber, A. Z.; Newman, J., Transport in Polymer-Electrolyte Membranes. Journal of The Electrochemical Society 2004, 151 (2), A326.
    53. Kreuer, K.-D.; Paddison, S. J.; Spohr, E.; Schuster, M., Transport in Proton Conductors for Fuel-Cell Applications:  Simulations, Elementary Reactions, and Phenomenology. Chemical Reviews 2004, 104 (10), 4637-4678.
    54. Tuckerman, M. E.; Marx, D.; Parrinello, M., The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 2002, 417 (6892), 925-929.
    55. Henkensmeier, D.; Cho, H.-R.; Kim, H.-J.; Nunes Kirchner, C.; Leppin, J.; Dyck, A.; Jang, J. H.; Cho, E.; Nam, S.-W.; Lim, T.-H., Polybenzimidazolium hydroxides – Structure, stability and degradation. Polymer Degradation and Stability 2012, 97 (3), 264-272.
    56. Chempath, S.; Boncella, J. M.; Pratt, L. R.; Henson, N.; Pivovar, B. S., Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides. The Journal of Physical Chemistry C 2010, 114 (27), 11977-11983.
    57. Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K.; Xu, T.; Zhuang, L., Anion-exchange membranes in electrochemical energy systems. Energy & Environmental Science 2014, 7 (10), 3135-3191.
    58. Arges, C. G.; Ramani, V., Investigation of Cation Degradation in Anion Exchange Membranes Using Multi-Dimensional NMR Spectroscopy. Journal of The Electrochemical Society 2013, 160 (9), F1006-F1021.
    59. Qiu, B.; Lin, B.; Qiu, L.; Yan, F., Alkaline imidazolium- and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications. Journal of Materials Chemistry 2012, 22 (3), 1040-1045.
    60. Ye, Y.; Elabd, Y. A., Relative Chemical Stability of Imidazolium-Based Alkaline Anion Exchange Polymerized Ionic Liquids. Macromolecules 2011, 44 (21), 8494-8503.
    61. Chen, D.; Hickner, M. A., Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes. ACS Applied Materials & Interfaces 2012, 4 (11), 5775-5781.
    62. Deavin, O.; Murphy, S.; Ong, A.; Poynton, S.; Zeng, R.; Herman, H.; Varcoe, J., Anion-exchange membranes for alkaline polymer electrolyte fuel cells: Comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head- groups. Energy & Environmental Science 2012, 5, 8584-8597.
    63. Vogel, H.; Marvel, C. S., Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science 1961, 50 (154), 511-539.
    64. Iwakura, Y.; Uno, K.; Imai, Y., Polyphenylenebenzimidazoles. Journal of Polymer Science Part A: General Papers 1964, 2 (6), 2605-2615.
    65. Eaton, P. E.; Carlson, G. R.; Lee, J. T., Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. The Journal of Organic Chemistry 1973, 38 (23), 4071-4073.
    66. Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J., High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science 2009, 34 (5), 449-477.
    67. Pu, H.; Liu, G., Synthesis and solubility of poly(N-methylbenzimidazole) and poly(N-ethylbenzimidazole): control of degree of alkylation. Polymer International 2005, 54 (1), 175-179.
    68. Li, X.; Qian, G.; Chen, X.; Benicewicz, B. C., Synthesis and Characterization of a New Fluorine-Containing Polybenzimidazole (PBI) for Proton-Conducting Membranes in Fuel Cells. Fuel Cells 2013, 13 (5), 832-842.
    69. Kim, S.-K.; Kim, T.-H.; Jung, J.-W.; Lee, J.-C., Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications. Polymer 2009, 50 (15), 3495-3502.
    70. Kim, T.-H.; Kim, S.-K.; Lim, T.-W.; Lee, J.-C., Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes. Journal of Membrane Science 2008, 323 (2), 362-370.
    71. Chuang, S.-W.; Hsu, S. L.-C., Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (15), 4508-4513.
    72. Yang, J.; Li, Q.; Cleemann, L. N.; Xu, C.; Jensen, J. O.; Pan, C.; Bjerrum, N. J.; He, R., Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry 2012, 22 (22), 11185-11195.
    73. Chen, J.-C.; Chen, P.-Y.; Liu, Y.-C.; Chen, K.-H., Polybenzimidazoles containing bulky substituents and ether linkages for high-temperature proton exchange membrane fuel cell applications. Journal of Membrane Science 2016, 513, 270-279.
    74. 林凡傑. 新型四胺單體與聚苯并咪唑之合成及在高溫型質子交換膜燃料電池之應用. 國立臺灣科技大學, 台北市, 2016.
    75. 洪曉薇. 含氟側基之聚苯并咪唑之合成與特性及在高溫型質子交換膜燃料電池之應用. 國立臺灣科技大學, 台北市, 2018.
    76. Chen, J.-C.; Chen, P.-Y.; Lee, S.-W.; Liou, G.-L.; Chen, C.-J.; Lan, Y.-H.; Chen, K.-H., Synthesis of soluble polybenzimidazoles for high-temperature proton exchange membrane fuel cell (PEMFC) applications. Reactive and Functional Polymers 2016, 108, 122-129.
    77. Pan, J.; Chen, C.; Zhuang, L.; Lu, J., Designing Advanced Alkaline Polymer Electrolytes for Fuel Cell Applications. Accounts of Chemical Research 2012, 45 (3), 473-481.
    78. Huang, T.; He, G.; Xue, J.; Otoo, O.; He, X.; Jiang, H.; Zhang, J.; Yin, Y.; Jiang, Z.; Douglin, J. C.; Dekel, D. R.; Guiver, M. D., Self-crosslinked blend alkaline anion exchange membranes with bi-continuous phase separated morphology to enhance ion conductivity. Journal of Membrane Science 2020, 597, 117769.
    79. Rao, A. H. N.; Nam, S.; Kim, T.-H., Alkyl bisimidazolium-mediated crosslinked comb-shaped polymers as highly conductive and stable anion exchange membranes. RSC Advances 2016, 6 (20), 16168-16176.
    80. Mohanty, A. K.; Song, Y. E.; Jung, B.; Kim, J. R.; Kim, N.; Paik, H.-j., Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: Synthesis, characterization and microbial fuel cell performance. International Journal of Hydrogen Energy 2020, 45 (51), 27346-27358.
    81. Sun, F.; Qin, L.-L.; Zhou, J.; Wang, Y.-K.; Rong, J.-Q.; Chen, Y.-J.; Ayaz, S.; Hai-Yin, Y. U.; Liu, L., Friedel-Crafts self-crosslinking of sulfonated poly(etheretherketone) composite proton exchange membrane doped with phosphotungstic acid and carbon-based nanomaterials for fuel cell applications. Journal of Membrane Science 2020, 611, 118381.
    82. Zhu, L.; Zimudzi, T. J.; Li, N.; Pan, J.; Lin, B.; Hickner, M. A., Crosslinking of comb-shaped polymer anion exchange membranes via thiol–ene click chemistry. Polymer Chemistry 2016, 7 (14), 2464-2475.
    83. Hu, B.; Miao, L.; Bai, Y.; Lü, C., Facile construction of crosslinked anion exchange membranes based on fluorenyl-containing polysulfone via click chemistry. Polymer Chemistry 2017, 8 (30), 4403-4413.
    84. Tuli, S.; Roy, A.; Elgammal, R.; Tian, M.; Zawodzinski, T.; Fujiwara, T., Effect of Morphology on Anion Conductive Properties in Self-Assembled Polystyrene-Based Copolymer Membranes. Journal of Membrane Science 2018, 565.
    85. Jalani, H.; Çapcı, A.; Tsogoeva, S., Synthesis of Substituted 1,2,3-Triazoles via Metal-Free Click Cycloaddition Reactions and Alternative Cyclization Methods. Synthesis 2016, 49.
    86. Thomas, O. D.; Soo, K. J. W. Y.; Peckham, T. J.; Kulkarni, M. P.; Holdcroft, S., Anion conducting poly(dialkyl benzimidazolium) salts. Polymer Chemistry 2011, 2 (8), 1641-1643.
    87. Thomas, O. D.; Soo, K. J. W. Y.; Peckham, T. J.; Kulkarni, M. P.; Holdcroft, S., A Stable Hydroxide-Conducting Polymer. Journal of the American Chemical Society 2012, 134 (26), 10753-10756.
    88. Wright, A. G.; Holdcroft, S., Hydroxide-Stable Ionenes. ACS Macro Letters 2014, 3 (5), 444-447.
    89. Carmo, M.; Doubek, G.; Sekol, R. C.; Linardi, M.; Taylor, A. D., Development and electrochemical studies of membrane electrode assemblies for polymer electrolyte alkaline fuel cells using FAA membrane and ionomer. Journal of Power Sources 2013, 230, 169-175.
    90. Holdcroft, S., Fuel Cell Catalyst Layers: A Polymer Science Perspective. Chemistry of Materials 2014, 26 (1), 381-393.
    91. Jheng, L.-c.; Hsu, S. L.-c.; Lin, B.-y.; Hsu, Y.-l., Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells. Journal of Membrane Science 2014, 460, 160-170.
    92. 陳秉彥. 新型氫氧根離子交換膜之製備及性質探討. 國立臺灣科技大學, 台北市, 2018.
    93. Jannasch, P.; Weiber, E. A., Configuring Anion-Exchange Membranes for High Conductivity and Alkaline Stability by Using Cationic Polymers with Tailored Side Chains. Macromolecular Chemistry and Physics 2016, 217 (10), 1108-1118.
    94. Wang, X.; Li, J.; Chen, W.; Pang, B.; Liu, Y.; Guo, Y.; Wu, X.; Cui, F.; He, G., Polybenzimidazole Ultrathin Anion Exchange Membrane with Comb-Shape Amphiphilic Microphase Networks for a High-Performance Fuel Cell. ACS Applied Materials & Interfaces 2021, 13 (42), 49840-49849.
    95. Lin, B.; Xu, F.; Su, Y.; Han, J.; Zhu, Z.; Chu, F.; Ren, Y.; Zhu, L.; Ding, J., Ether-Free Polybenzimidazole Bearing Pendant Imidazolium Groups for Alkaline Anion Exchange Membrane Fuel Cells Application. ACS Applied Energy Materials 2020, 3 (1), 1089-1098.
    96. Jheng, L.-C.; Cheng, C.-W.; Ho, K.-S.; Hsu, S. L.; Hsu, C.-Y.; Lin, B.-Y.; Ho, T.-H., Dimethylimidazolium-Functionalized Polybenzimidazole and Its Organic–Inorganic Hybrid Membranes for Anion Exchange Membrane Fuel Cells. Polymers 2021, 13 (17).
    97. Abdi, Z. G.; Chiu, T.-H.; Pan, Y.-Z.; Chen, J.-C., Anion exchange membranes based on ionic polybenzimidazoles crosslinked by thiol-ene reaction. Reactive and Functional Polymers 2020, 156, 104719.
    98. Hao, J.; Jiang, Y.; Gao, X.; Lu, W.; Xiao, Y.; Shao, Z.; Yi, B., Functionalization of polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes. Journal of Membrane Science 2018, 548, 1-10.
    99. Lin, C.; Wang, J.; Shen, G.; Duan, J.; Xie, D.; Cheng, F.; Zhang, Y.; Zhang, S., Construction of crosslinked polybenz imidazole-based anion exchange membranes with ether-bond-free backbone. Journal of Membrane Science 2019, 590, 117303.
    100. Kizewski, J.; Mudri, N.; Zeng, R.; Poynton, S.; Slade, R.; Varcoe, J., Alkaline Electrolytes and Reference Electrodes for Alkaline Polymer Electrolyte Membrane Fuel Cells. 2010; Vol. 33, p 27-35.
    101. Yanagi, H.; Fukuta, K., Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs). ECS Transactions 2008, 16.
    102. Zhegur-Khais, A.; Kubannek, F.; Krewer, U.; Dekel, D. R., Measuring the true hydroxide conductivity of anion exchange membranes. Journal of Membrane Science 2020, 612, 118461.
    103. Yuan, X.; Wang, H.; Colin Sun, J.; Zhang, J., AC impedance technique in PEM fuel cell diagnosis—A review. International Journal of Hydrogen Energy 2007, 32 (17), 4365-4380.
    104. Lee, C. H.; Park, H. B.; Lee, Y. M.; Lee, R. D., Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application. Industrial & Engineering Chemistry Research 2005, 44 (20), 7617-7626.
    105. Xie, Z.; Song, C.; Andreaus, B.; Navessin, T.; Shi, Z.; Zhang, J.; Holdcroft, S., Discrepancies in the Measurement of Ionic Conductivity of PEMs Using Two- and Four-Probe AC Impedance Spectroscopy. Journal of The Electrochemical Society 2006, 153 (10), E173.
    106. Soboleva, T.; Xie, Z.; Shi, Z.; Tsang, E.; Navessin, T.; Holdcroft, S., Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. Journal of Electroanalytical Chemistry 2008, 622 (2), 145-152.
    107. Yadav, R.; Fedkiw, P. S., Analysis of EIS Technique and Nafion 117 Conductivity as a Function of Temperature and Relative Humidity. Journal of The Electrochemical Society 2012, 159 (3), B340-B346.
    108. Chen, W.; Wang, X.; He, G.; Li, T.; Gong, X.; Wu, X., Anion exchange membrane with well-ordered arrays of ionic channels based on a porous anodic aluminium oxide template. Journal of Applied Electrochemistry 2018, 48 (10), 1151-1161.
    109. Faraj, M.; Boccia, M.; Miller, H.; Martini, F.; Borsacchi, S.; Geppi, M.; Pucci, A., New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis. International Journal of Hydrogen Energy 2012, 37 (20), 14992-15002.
    110. Cao, Y.-C.; Wang, X.; Mamlouk, M.; Scott, K., Preparation of alkaline anion exchange polymer membrane from methylated melamine grafted poly(vinylbenzyl chloride) and its fuel cell performance. Journal of Materials Chemistry 2011, 21 (34), 12910-12916.
    111. Li, N.; Guiver, M. D.; Binder, W. H., Towards High Conductivity in Anion-Exchange Membranes for Alkaline Fuel Cells. ChemSusChem 2013, 6 (8), 1376-1383.
    112. Hwang, D. S.; Sherazi, T. A.; Sohn, J. Y.; Noh, Y. C.; Park, C. H.; Guiver, M. D.; Lee, Y. M., Anisotropic radio-chemically pore-filled anion exchange membranes for solid alkaline fuel cell (SAFC). Journal of Membrane Science 2015, 495, 206-215.
    113. Heimerdinger, P.; Rosin, A.; Danzer, M. A.; Gerdes, T., A Novel Method for Humidity-Dependent Through-Plane Impedance Measurement for Proton Conducting Polymer Membranes. Membranes 2019, 9 (5).
    114. Lee, K. H.; Cho, D. H.; Kim, Y. M.; Moon, S. J.; Seong, J. G.; Shin, D. W.; Sohn, J.-Y.; Kim, J. F.; Lee, Y. M., Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking. Energy & Environmental Science 2017, 10 (1), 275-285.
    115. Yamada, O.; Yin, Y.; Tanaka, K.; Kita, H.; Okamoto, K.-i., Polymer electrolyte fuel cells based on main-chain-type sulfonated polyimides. Electrochimica Acta 2005, 50 (13), 2655-2659.
    116. Tham, D. D.; Kim, D., C2 and N3 substituted imidazolium functionalized poly(arylene ether ketone) anion exchange membrane for water electrolysis with improved chemical stability. Journal of Membrane Science 2019, 581, 139-149.
    117. Li, D.; Park, E. J.; Zhu, W.; Shi, Q.; Zhou, Y.; Tian, H.; Lin, Y.; Serov, A.; Zulevi, B.; Baca, E. D.; Fujimoto, C.; Chung, H. T.; Kim, Y. S., Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nature Energy 2020, 5 (5), 378-385.
    118. Vezzù, K.; Maes, A. M.; Bertasi, F.; Motz, A. R.; Tsai, T.-H.; Coughlin, E. B.; Herring, A. M.; Di Noto, V., Interplay Between Hydroxyl Density and Relaxations in Poly(vinylbenzyltrimethylammonium)-b-poly(methylbutylene) Membranes for Electrochemical Applications. Journal of the American Chemical Society 2018, 140 (4), 1372-1384.
    119. Lin, C. X.; Huang, X. L.; Guo, D.; Zhang, Q. G.; Zhu, A. M.; Ye, M. L.; Liu, Q. L., Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells. Journal of Materials Chemistry A 2016, 4 (36), 13938-13948.
    120. Ge, Q.; Ran, J.; Miao, J.; Yang, Z.; Xu, T., Click Chemistry Finds Its Way in Constructing an Ionic Highway in Anion-Exchange Membrane. ACS Applied Materials & Interfaces 2015, 7 (51), 28545-28553.
    121. Yang, C.; Liu, L.; Han, X.; Huang, Z.; Dong, J.; Li, N., Highly anion conductive, alkyl-chain-grafted copolymers as anion exchange membranes for operable alkaline H2/O2 fuel cells. Journal of Materials Chemistry A 2017, 5 (21), 10301-10310.
    122. Magonov, S. N., Atomic Force Microscopy in Analysis of Polymers. Encyclopedia of Analytical Chemistry 2006.
    123. Seibt, S.; Ryan, T., Microfluidics for Time-Resolved Small-Angle X-Ray Scattering. 2020.
    124. Hugar, K. M.; Kostalik, H. A.; Coates, G. W., Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure–Stability Relationships. Journal of the American Chemical Society 2015, 137 (27), 8730-8737.
    125. Yang, C.; Wang, S.; Ma, W.; Jiang, L.; Sun, G., Highly alkaline stable N1-alkyl substituted 2-methylimidazolium functionalized alkaline anion exchange membranes. Journal of Materials Chemistry A 2015, 3 (16), 8559-8565.
    126. Marino, M. G.; Kreuer, K. D., Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids. ChemSusChem 2015, 8 (3), 513-523.
    127. 張紜溱. 新型交聯聚苯并咪唑之合成及在陰離子交換膜燃料電池之應用. 國立臺灣科技大學, 台北市, 2020.
    128. Xu, Z.; Wan, L.; Liao, Y.; Wang, P.; Liu, K.; Wang, B., Anisotropic anion exchange membranes with extremely high water uptake for water electrolysis and fuel cells. Journal of Materials Chemistry A 2021.
    129. Barbero, G.; Alexe-Ionescu, A. L.; Lelidis, I., Significance of small voltage in impedance spectroscopy measurements on electrolytic cells. Journal of Applied Physics 2005, 98 (11), 113703.
    130. R. Niya, S. M.; Hoorfar, M., Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique – A review. Journal of Power Sources 2013, 240, 281–293.
    131. Rao, A. H. N.; Nam, S.; Kim, T.-H., Comb-shaped alkyl imidazolium-functionalized poly(arylene ether sulfone)s as high performance anion-exchange membranes. Journal of Materials Chemistry A 2015, 3 (16), 8571-8580.
    132. Chen, P.-Y.; Chiu, T.-H.; Chen, J.-C.; Chang, K.-P.; Tung, S.-H.; Chuang, W.-T.; Chen, K.-H., Poly(ether sulfone)-Based Anion Exchange Membranes Containing Dense Quaternary Ammonium Cations and Their Application for Fuel Cells. ACS Applied Energy Materials 2021, 4 (3), 2201-2217.
    133. Mandal, M.; Huang, G.; Kohl, P. A., Highly Conductive Anion-Exchange Membranes Based on Cross-Linked Poly(norbornene): Vinyl Addition Polymerization. ACS Applied Energy Materials 2019, 2 (4), 2447-2457.
    134. 周世芳. 活性開環複分解反應之聚降冰烯合成以及在陰離子交換膜燃料電池之應用. 國立臺灣科技大學, 台北市, 2020.
    135. Park Systems Phase Imaging / Phase Detection Microscopy. https://www.parksystems.com/park-spm-modes/91-standard-imaging-mode/221-phase-imaging-phase-detection-microscopy-pdm (accessed Oct 14).
    136. Jagtap, R.; Ambre, A., Atomic force microscopy (AFM): Basics and its important applications for polymer characterization: An overview. Indian Journal of Engineering & Materials Sciences 2006, 13, 368-384.
    137. Bernadó, P.; Svergun, D. I., Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Molecular BioSystems 2012, 8 (1), 151-167.
    138. Dang, H.-S.; Jannasch, P., Exploring Different Cationic Alkyl Side Chain Designs for Enhanced Alkaline Stability and Hydroxide Ion Conductivity of Anion-Exchange Membranes. Macromolecules 2015, 48 (16), 5742-5751.
    139. Worrell, B. T.; Malik, J. A.; Fokin, V. V., Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science (New York, N.Y.) 2013, 340 (6131), 457-460.
    140. Durham, O. Z.; Norton, H. R.; Shipp, D. A., Functional polymer particles via thiol–ene and thiol–yne suspension “click” polymerization. RSC Advances 2015, 5 (82), 66757-66766.
    141. Özdemir, Y.; Özkan, N.; Devrim, Y., Fabrication and Characterization of Cross-linked Polybenzimidazole Based Membranes for High Temperature PEM Fuel Cells. Electrochimica Acta 2017, 245, 1-13.
    142. Kwon, S.; Rao, A.; Kim, T.-H., Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s. Journal of Power Sources 2017, 375.

    無法下載圖示 全文公開日期 2027/01/27 (校內網路)
    全文公開日期 2027/01/27 (校外網路)
    全文公開日期 2027/01/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE